

SRI SHAKTHI

INSTITUTE OF ENGINEERING AND TECHNOLOGY, (AUTONOMOUS) L&T BYPASS ROAD, COIMBATORE - 62

DEPARTMENT OF MECHANICAL ENGINEERING

CURRICULUM AND SYLLABI M.E in CAD/CAM

REGULATION 2021

SRI SHAKTHI INSTITUTE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) R 2021 M.E – CAD/CAM CURRICULUM

		SEMESTER	[
<u>S.No</u>	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THEC	ORY							
1	21MS101	Applied Mathematics for Mechanical Engineers	BS	4	3	1	0	4
2	21CC101	Computer Applications in Design	PC	3	3	0	0	3
3	21CC102	Advanced Finite Element Analysis	PC	3	3	0	0	3
4	21CC103	Computer Aided Tools for Manufacturing	PC	3	3	0	0	3
5	21CC104	Mechanical Behaviour of Materials	PC	3	3	0	0	3
6	21CC105	Industrial Robotics and Expert Systems	PC	3	3	0	0	3
7	21AC101	Audit Course - 1(Research Paper writing)	HS	2	2	0	0	0
LABC	ORATORY							
8	21CC111	Advanced Analysis and Simulation Lab	PC	4	0	0	4	2
9	21CC112	CAD Laboratory	PC	4	0	0	4	2

		SEMESTER -	II					
<u>S.No</u>	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1	21CC201	Research Methodology	ES	3	3	0	0	3
2	21CC202	Design for Manufacture, Assembly and Environments	РС	3	3	0	0	3
3	21CC203	Additive Manufacturing and Tooling	PC	3	3	0	0	3
4	21PCC12	Elective I(Metrology and Non Destructive Testing)	PE	3	3	0	0	3
5	21PCC14	Elective II(Composite Materials and Mechanics)	PE	3	3	0	0	3
6	21PCC17	Elective III(Design for Internet of Things)	PE	3	3	0	0	3
LAB	ORATORY							
7	21CC211	Design Project	РС	4	0	0	4	2
8	21CC212	CAM Laboratory	РС	4	0	0	4	2
9		Audit Course –II	ES	2	2	0	0	0

		SEMEST	ER III					
<u>S.No</u>	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С
THE	ORY							
1	21CC301	Optimization Techniques in Design	PC	3	3	0	0	3
2	21PCC13	Elective IV (Quality Management Techniques)	PE	3	3	0	0	3
3	21PCC16	Elective V(Product Lifecycle Management)	PE	3	3	0	0	3
LAB	LABORATORY							
4	21CC311	Dissertation Phase I	EEC	12	0	0	12	6
5	21CC312	Technical Seminar	EEC	2	0	0	2	1

	SEMESTER - IV									
<u>S.No</u>	COURSE CODE	COURSE TITLE	CATEGORY	CONTACT PERIODS	L	Т	Р	С		
1	21CC411	Dissertation Phase II	EEC	24	0	0	24	12		

PROFESSIONAL ELECTIVES

S.N O	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Р	С
1	21PCC01	Competitive Manufacturing Systems	PE	3	3	0	0	3
2	21PCC02	Computer Control in Process Planning	PE	3	3	0	0	3
3	21PCC03	Advanced Mechanics of Materials	PE	3	3	0	0	3
4	21PCC04	Information Analytics	PE	3	3	0	0	3
5	21PCC05	Mechatronics Applications in Manufacturing	PE	3	3	0	0	3
6	21PCC06	Advanced Tool Design	PE	3	3	0	0	3
7	21PCC07	Mechanisms Design and Simulation	PE	3	3	0	0	3
8	21PCC08	Computational Fluid Dynamics	PE	3	3	0	0	3
9	21PCC09	Reliability in Engineering Systems	PE	3	3	0	0	3
10	21PCC10	Integrated Product Design and Process Development	PE	3	3	0	0	3
11	21PCC11	Performance Modelling and Analysis of Manufacturing System	PE	3	3	0	0	3
12	21PCC12	Metrology and Non Destructive Testing	PE	3	3	0	0	3
13	21PCC13	Quality Management Techniques	PE	3	3	0	0	3
14	21PCC14	Composite Materials and Mechanics	PE	3	3	0	0	3
15	21PCC15	Design of Material Handling Equipment's	PE	3	3	0	0	3
16	21PCC16	Product Lifecycle Management	PE	3	3	0	0	3
17	21PCC17	Design for Internet of Things	PE	3	3	0	0	3
18	21PCC18	Artificial Intelligent Systems	PE	3	3	0	0	3

AUDIT COURSES*

Seme ster	Course code	Course Title	Cat egor y	Contact Periods	L	Т	Р	С
I or II	21AC01	English for Research Paper Writing	AC	2	2	0	0	0
I or II	21AC02	Disaster Management	AC	2	2	0	0	0
I or II	21AC03	Stress Management by Yoga	AC	2	2	0	0	0
I or II	21AC04	Personality Development through Life Enlightenment Skills.	AC	2	2	0	0	0

*Any two audit courses during I & II semester

LTPC 3104

COURSE OBJECTIVES:

This course is designed to enrich the knowledge in various advanced mathematical techniques such as Matrix theory, Calculus of variations, Probability and random variables, Laplace transforms and Boundary value problems. The fundamental concepts in these areas will be more useful for the students to model the engineering problems and solving them by applying these methods.

PRE-REQUISITES:

- Basics concepts of Matrices
- System of linear equation
- Basic Probability and Trigonometric functions
- Basic concepts of Differentiation
- Basic concepts of Integration

UNIT I – MATRIX THEORY

The Cholesky decomposition – Generalized Eigenvectors – QR factorization – Least squares method – Singular value decomposition.

UNIT II – CALCULUS OF VARIATIONS

Variation and its properties – Euler's equation – Functionals dependent on first and higher order derivatives - Functionals dependent on functions of several independent variables -Variational problems with moving boundaries.

UNIT III – PROBABILITYAND RANDOM VARIABLES

Probability – Axioms of probability – Conditional probability – Baye's theorem – Random variables - Probability function - Moments - Moment generating functions and their properties – Binomial, Poisson, Uniform, Exponential and Normal distributions (Problems only).

UNIT IV- LAPLACE TRANSFORM TECHNIQUES FOR PARTIAL DIFFERENTIAL EQUATIONS

– Bessel's function – Dirac delta function – Unit step function – Convolution theorem (Problems only) – Inverse Laplace transform: Complex inversion formula – Solutions to partial differential equations: Heat equation – Wave equation.

UNIT V – NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS 9+3Boundary value problems for ODE - Numerical solution of PDE - Finite difference methods - Solution of Poisson equation - Liebmann's iteration process - Solution of heat conduction equation by Schmidt explicit formula - Solution of one dimensional wave equation.

Theory: 45	Tutorial:15	Practical:0
Incory. ic	1 4/01 141/16	1 I ucticulito

COURSE OUTCOMES:

After completing this course, a student will be able to

9+3

9+3

9+3

9+3

Total: 60 Periods

- **CO1.** Apply various methods in matrix theory to solve system of linear equations.
- **CO2.** Maximizing and minimizing the functional that occur in various branches of engineering disciplines.
- **CO3.** Compute the probability and moments, standard distributions of discrete and continuous random variables in the Engineering problems.
- **CO4.** Apply the Laplace Technique to solve the Partial Differential equations with initial and boundary conditions.
- CO5. Solve the Partial Differential equations using different Numerical Techniques.

	CO/PO/MAPPING (S/M/W indicates strength of correlation 3 – Strong , 2 – Moderate , 1 – Fair)											CO/PSO MAPPING		
COs			Р	ROGF	RAMM	IE OU	JTCO	MES		(POs)			PS	Os
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PSO1	PSO2		
CO1	3	2	2									2	2	2
CO2	3	2	2									2	2	2
CO3	3	2	2									2	2	2
CO4	3	2	2									2	2	2
CO5	3	2	2									2	2	2

REFERENCE BOOKS :

R1.Bronson, R. "Matrix Operations", Schaum's outline series, 2nd Edition, McGraw-Hill, 2011.

- R2. Gupta, A.S., "Calculus of variations with applications", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
- R3. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's probability and Statistics for Engineers", Pearson education, Asia, 8th Edition, 2015.
- R4. Andrews L.C. and Shivamoggi, B. "Integral Transforms for Engineers", Prentice Hall of India Pvt. Ltd., New Delhi, 2003.
- R5.James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2004.
- R6.O'Neil, P.V., "Advanced Engineering Mathematics", Thomson Asia Pvt., Ltd., Singapore, 2003.
- R7. Sankara Rao, K., "Introduction to Partial Differential Equations", Prentice Hall of India Pvt. Ltd., New Delhi, 1997.
- R8. Rajasekaran S, "Numerical Methods in Science and Engineering –A Practical Approach", Wheeler Publishing, 2nd Edition, 1999,

UNIT I

COMPUTER APPLICATIONS IN DESIGN

 L
 T
 P
 C

 3
 0
 0
 3

9

9

COURSE OBJECTIVES

To impart knowledge on computer graphics which are used routinely in diverse areas as science, engineering, medicine, etc.

INTRODUCTION TO COMPUTER GRAPHICS FUNDAMENTALS

Output primitives (points, lines, curves etc.,), 2-D & 3-D transformation (Translation, scaling, rotation) windowing - view ports - clipping transformation.

UNIT II CURVES AND SURFACES MODELING

Introduction to curves - Analytical curves: line, circle and conics – synthetic curves: Hermite cubic spline- Bezier curve and B-Spline curve – curve manipulations. Introduction to surfaces -Analytical surfaces: Plane surface, ruled surface, surface of revolution and tabulated cylinder – synthetic surfaces: Hermite bicubic surface- Bezier surface and B-Spline surface- surface manipulations.

UNIT III	NURBS AND SOLID MODELING	9
NURBS- Basics-	curves, lines, arcs, circle and bi linear surface. Regularized Boolea	an set
operations - prin	mitive instancing - sweep representations - boundary representation	ons –
constructive solid	Geometry - comparison of representations - user interface for solid mode	eling.

UNIT IVVISUAL REALISM9Hidden - Line - Surface - solid removal algorithms shading - coloring. Introduction to
parametric and variational geometry based software's and their principles creation of prismatic
and lofted parts using these packages.9

UNIT VASSEMBLY OF PARTS AND PRODUCT DATA EXCHANGE9Assembly modeling - interferences of positions and orientation - tolerances analysis - massproperty calculations - mechanism simulation. Graphics and computing standards- Open GLData Exchange standards - IGES, STEP etc- Communication standards.

Theo	ry:45	Tutorial:	Practical:	Total:45 Periods						
COURSE OUTCOMES										
At the er	nd of the o	course students should be	e able to							
CO1 :	CO1: Understand the fundamentals of computer graphics									
CO2 :	Apply d	ifferent techniques for g	eometric modelling							

CO3	: Ap	Apply different algorithm to create prismatic and lofted parts Discuss tolerance analysis and mass property calculations													
CO4	: Dis	scuss t	oleran	ice an	alysis	and	mass	prope	rty ca	lculati	ions				
CO5	: Ex	plain c	lata ex	chan	ge sta	ndard	ls and	com	nunic	ation	standa	rds			
	CO/PO) MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	elation)	(CO/PS	0
			3	-Stroi	ng, 2-	Mod	erate,	1-Fa	ir				N	Aappi	ng
CO			PI	ROGI	RAM	ME (DUTC	COM	ES (P	Os)				PSOs	;
s	PO PO<							PO 12	PS O1	PS O2	PS 03				
CO	1 2	1	3		1								2		
CO2	2 3	3	1		3								2		
CO3	3 2	2	3		3								2		
CO4	1 2	2	2		2								2		
CO	5 2	1	2		1								2		
REF	ERENC	CE BC	OKS												
R1.	David	F. Ro	ogers,	Jame	s Ala	n Ad	ams'	'Math	emat	ical el	lement	s for	compu	ter gra	phics"
	second	l editio	on, Ta	ta Mc	Graw	-Hill	editio	n.							
R2.	Donal	d Hear	n and	M. Pa	auline	Bake	er "Co	omput	er Gr	aphics	s", Pre	ntice H	Iall, In	c., 199	2.
R3.	Foley,	Wan	Dam	, Fei	ner a	nd H	ughes	- C	Compi	iter g	raphic	s prin	ciples	& pra	ctices,
	Pearso						C		I	0	1	1	I	I	,
R4.	Ibrahiı	n Zeic	l Mast	ering	CAD	/CAN	A - M	[cGra	w Hil	l, Inte	rnatior	nal Edi	tion, 2	007.	
D.C.				0											
R5.	Willia	m M ľ	Neuma	ann ar	nd Ro	bert H	.Spro	ul "P	rıncip	oles of	Comp	outer C	iraphic	s", Mo	c Graw
	Hill B	ook Co	o. Sing	gapor	e, 198	9.									

210010			PE ET ENTENTE ANAL XX	TC	L	Т	Р	С
21CC102	<u>z</u>	ADVANCED FINI	FE ELEMENT ANALYS	515	3	0	0	3
COURSE	E OBJE	CTIVES						·
To develo	op a tho	rough understanding of	the advanced finite element	nt analy	ysis	techn	ique	s with
an ability	to effect	ctively use the tools of t	he analysis for solving pr	actical	proł	olems	s aris	ing in
engineerii	ng desig	n						
UNI	ГІ	BENDIN	G OF PLATES AND SH	ELLS				9
Review of	f Elastic	ity Equations – Bending	of Plates and Shells - Fin	ite Eler	nent	Forr	nulat	ion of
Plate and	Shell El	ements - Conforming an	d Non-Conforming Elemen	nts – C	0 an	d C1	Cont	inuity
Elements	–Degen	erated shell elements- Ap	oplication and Examples.					
UNIT	' II	NO	N-LINEAR PROBLEMS	5				9
Introducti	on – Ite	erative Techniques – Ma	terial non-linearity – Elas	sto Plas	sticit	y – 1	Plasti	city –
Visco Pla	asticity	– Geometric Non line	arity – large displaceme	nt For	mula	ation	–Sc	lution
procedure	- Applic	ation in Metal Forming	Process and Contact Proble	ems.				
UNIT	III	D	YNAMIC PROBLEM					9
Direct Fo	ormulatio	on – Free, Transient an	d Forced Response – So	lution	Proc	edure	es –	Eigen
solution-S	Subspace	e Iterative Technique –	Response analysis-Houl	oolt, W	Vilso	n, N	ewm	ark –
Methods	– Expli	cit & Implict Methods-	Lanchzos, Reduced met	hod fo	r laı	ge s	ize s	ystem
equations								
UNIT	IV	FLUID MEC	HANICS AND HEAT TH	RANSF	ER			9
Governing	g Equa	tions of Fluid Mechar	ics – Solid structure in	nteracti	on	- In	viscio	1 and
Incompre	ssible F	low – Potential Formu	lations – Slow Non-New	tonian	Flo	w –	Meta	al and
Polymer I	Forming	– Navier Stokes Equatio	n – Steady and Transient S	Solutior	1.			
UNIT	V	ERROR ESTIMA	TES AND ADAPTIVE R	EFIN	EMI	ENT		9
Error norr	ns and C	Convergence rates – h-ref	inement with adaptivity –	Adapti	ve re	efiner	nent.	
Theory	y:45	Tutorial:	Practical:	T	otal:	45 P	eriod	ls
COURSE	E OUTC	COMES						
At the end	d of the	course students should be	e able to					
CO1:	The stu	dents will understand t	he Finite Element Formu	ulation	of	Plate	and	Shell
	Elemen	ts and its application.						
CO2 :	The stu	idents will be able to	gain knowledge in mater	rial &	geo	metri	c no	n-and
	plasticit	у.						

CO3	: 1	The students will be able to solve problems under dynamic conditions by applying													
	v	arious	technic	ues.											
CO4	: Т	The students can arrive at the solutions for fluid mechanics and heat transfer													
	p	problems.													
CO5	: T	The students will acquire knowledge in error norms, convergence rates and													
	r	refinement.													
The students will solve the real world engineering problems using FEA.															
	CO/I	CO/PO MAPPING (S/M/W indicates strength of correlation) CO/PSO													
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				N	Aappii	ng
CO			P	ROGI	RAM	ME ()UT(COM	ES (P	Os)				PSOs	
s	PC	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO	1	2	3	-	2	•	-	2	3	10			2		
CO2	2 2	2	2		1			2	1				2		
CO3	3 1	2	2		3			2	3				2		
CO ²	1 3	1	3		2			1	2				2		
COS	5 1	2	2		2			2	2				2		
REF	EREN	ICE B	OOKS	1	1	1				1	1				<u> </u>
R1.	Bath	e K.J.,	"Finite	Elen	nent P	roced	ures i	n Eng	gineer	ring A	nalysis	", Pre	ntice H	[all, 19	90.
R2.	Cool	R.D.	, "Con	cepts	and A	Applic	cation	s of]	Finite	Elem	ent A	nalysis	s", Joh	n Wile	ey and
	Sons	Inc., N	New yo	rk, 19	89.										
R3.	Zien	kiewic	z, O.C	. and	Tayl	or, R	L., '	'The	Finite	e Eler	nent N	Aethoo	ł", Fo	urth E	dition,
	Volu	mes 1	& 2, M	[cGrav	w Hil	l Inter	matio	nal Ec	lition	, Phys	ics Ser	vices,	1991.		

Theory: 45 Periods	Tutorial: 0	Practical: 0	Total: 45 Periods
--------------------	-------------	--------------	-------------------

COMPUTER AIDED TOOLS FOR MANUFACTURING

L	Т	Р	С
3	0	0	3

9

COURSE OBJECTIVES

The purpose of this course is to make the students to get familiarized with various computer aided tools that can be implemented in various industrial applications

UNIT I	COMPUTER AIDED MANUFACTURING	9
Manufacturing P	Processes – Removing, Forming, Deforming and joining – Integ	ration
equipments. Integ	grating CAD and CAM - Machine tools - Point to point and continuou	s path
machining, CNC	and DNC -Programming - Basics, Languages, G Code, M Code, - Too	ol path
generation and ve	rification – CAD/CAM– Production Control – Cellular Manufacturing	

UNIT IICOMPUTER AIDED PROCESS PLANNING9

Role of process planning in CAD/CAM Integration - Computer Aided Process Planning -Development, Benefits, Model and Architecture - CAPP Approaches - Variant, Generative and Hybrid – Process and Planning systems – CAM-I, D-CLASS and CMPP – Criteria in selecting a CAPP System.

UNIT III COMPUTER AIDED INSPECTION 9 Engineering Tolerances - Need for Tolerances - Conventional Tolerances - FITS and LIMITS - Tolerance Accumulation and Surface quality - Geometric Tolerances - Tolerances Practices in design, Drafting and manufacturing – Tolerance Analysis – Tolerance synthesis – Computer Aided Quality control – Contact Inspection Methods – Non Contact Inspection Methods - Non optical.

UNIT IV Scope and tasks of Reverse Engineering – Domain Analysis – Process Duplicating – Tools for RE – Developing Technical data – Digitizing techniques – Construction of surface model – Solid part model - Characteristic evaluation - Software's and its application - CMM and its feature capturing – surface and solid modeling.

REVERSE ENGINEERING

UNIT V	DATA MANAGEMENT	9
Strategies for Re	everse Engineering Data management – Software application – Fine	ding
renewable softwa	are components - Recycling real time embedded software - De	sign
experiments to e	valuate a RE tools - Rule based detection for RE user interface - RI	E of
assembly program	IS	

Theory:45 Tutorial:	Practical:	Total:45 Periods
---------------------	------------	------------------

COU	COURSE OUTCOMES														
At the	At the end of the course students should be able to														
CO1	: U	Understand and explain the important concepts in manufacturing system													
CO2	: A	Apply the concepts of Computer Aided Process Planning in manufacturing													
CO3	: A	Apply computer aided quality control and inspection methods in manufacturing													
CO4	: A	Apply the reverse engineering concepts for manufacturing													
CO5	: D	esign	and an	alysis	of en	ginee	ring c	ompo	nents	using	softwa	ares			
	CO/I	PO M.	APPIN	G (S/	M/W	indic	ates s	streng	gth of	corre	elation)	(CO/PS	0
	3-Strong, 2-Moderate, 1-Fair Mapping														
CO		PROGRAMME OUTCOMES (POs) PSOs													
s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO			2		5	3	7	2	3	10	11	14	2	02	03
CO2	2		2			2		3	2				2		
CO	3		1			3		2	1				2		
CO ₄	1		2			1		1	2				2		
CO	5		1			2		3	3				2		
REF	EREN	ICE B	OOKS	<u> </u> ;											
R1.	Cath	erine	A. Ingle	e, "Re	verse	Engir	neerin	g", Ta	ata M	c Grav	w Hill	Public	ation,	1994	
R2.	Davi	d D. I	Bedwor	th. Ma	ark R.	. Hen	dersoi	n. Phi	lp M.	Wolf	e. "Co	mpute	r Integ	rated]	Design
			acturing					-			-	1	2	,	0
R3.			Honra									vineeri	ησ Δτ	nerica	n Gear
N 3.			rers As			.u.c 11	lououl		i and			Sinceri	ng, Al	iiciical	i Geai
D.4							• •			(TT ¹		1.D		. .	1.5
R4.	Ibrah	ım Ze	eid and	R. Si	vasub	ramar	nan, '	'CAD	D/CAN	M The	ory an	d Prac	tice",	Kev1se	d First

R4. Ibrahim Zeid and R. Sivasubramanian, "CAD/CAM Theory and Practice", Revised First special Indian Edition, Tata Mc Graw Hill Publication, 2007

R5. Ibrahim Zeid, "Mastering CAD/CAM", special Indian Edition, Tata Mc Graw Hill Publication, 2007

R6. Linda Wills, "Reverse Engineering" Kluwer Academic Press, 1996.

MECHANICAL BEHAVIOR OF MATERIALS

 L
 T
 P
 C

 3
 0
 0
 3

COURSE OBJECTIVES

To know the mechanical behavior of both metallic and non-metallic materials under different loading and temperature conditions.

UNIT I BASIC CONCEPTS OF MATERIAL BEHAVIOR

9

Elasticity in metals and polymers– Strengthening mechanisms, work hardening, solid solutioning, grain boundary strengthening, poly phase mixture, precipitation, particle, fibre and dispersion strengthening. Effect of temperature, strain and strain rate on plastic behaviour – Super plasticity – High temperature fracture, creep.

UNIT II

FRACTURE AND FRACTURE MECHANICS

9

9

Types of fracture, basic mechanism of ductile and brittle fracture, Griffith's theory of brittle fracture, Orowan's modification. Izod and Charpy Impacts tests, Ductile to Brittle Transition Temperature (DBTT), Factors affecting DBTT, determination of DBTT. Fracture mechanics-introduction, modes of fracture, stress intensity factor, strain energy release rate, fracture toughness and determination of KIC, introduction to COD, J integral.

	BEHAVIOUR UNDER DYNAMIC LOADS AND DESIGN	
UNIT III	APPROACHES	

Stress intensity factor and fracture toughness – Fatigue, low and high cycle fatigue test, crack initiation and propagation mechanisms and Paris law.- Safe life, Stress life, strain-life and fail - safe design approaches -Effect of surface and metallurgical parameters on fatigue – Fracture of non metallic materials – Failure analysis, sources of failure, procedure of failure analysis.

UNIT IV

CREEP BEHAVIOUR AND TESTING

9

Creep curve, stages in creep curve and explanation, structural changes during creep, creep mechanisms, metallurgical factors affecting creep, high temperature alloys, stress rupture testing, creep testing machines, parametric methods of extrapolation. Deformation Mechanism Maps according to Frost/Ashby.

UNIT V	SELECTION OF MATERIALS								
Motivation for	Motivation for selection, cost basis and service requirements - Selection for mechanical								
properties, stren	properties, strength, toughness, fatigue and creep - Selection for surface durability corrosion								
and wear resista	and wear resistance – Relationship between materials selection and processing – Case studies in								
materials selecti	on with relevance to aero, auto, marine, machinery and nuclear application	ons –							

Comp	uter a	ided m	aterial	s sele	ction.									
The	ory:4	5	,	Tutor	ial:			Pı	actic	al:		To	otal:45 P	eriods
COUI	RSE (DUTC	OMES	5			1				1			
At the	end o	of the c	ourse	studer	nts sho	ould b	e abl	e to						
CO1 :	U	Understand the mechanical behavior of ductile and brittle materials												
CO2 :	A	Analyze fracture mechanisms for various materials												
CO3 :	Fa	Familiarize in the area of material behavior under dynamic loading and analyze the												
	re	reasons for failure of materials												
CO4 :	A	Analyze the creep behavior and testing												
CO5 :	Se	elect th	e mate	erials	for the	desi	gn of	engin	eerin	g struc	ctures			
	CO/P	O MA	PPIN	G (S/	M/W i	indic	ates s	treng	gth of	corre	lation)	CO	/PSO
			3	-Stro	n g, 2- 1	Mode	erate,	1-Fa	ir				Maj	pping
CO			Pl	ROG	RAM	ME ()UT(COM	ES (P	Os)		I	PS	SOs
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
C01		3	3	-	5	0	2	1	2	10		12	2	1502
CO2	2	3	2				1	1	2				2	
CO3	3	3	3				2	1	2				2	
CO4	3	1	2				1	2	1				2	
CO5	2	2	1	1				2	2				1	
REFF	REN	CE BO	DOKS											l
R1.	Ashb	y M.F.	, mate	rials s	electio	on in	Mech	anica	l Des	ign 2n	d Editi	ion, Bı	utter wor	th 1999.
R2.	Charl	es, J.A	A., Cra	ane, l	F.A.A.	and	Fun	ness,	J.A.G	i., Sel	ection	and	use of e	engineerin
		ials, (3												U
R3.	Flinn	, R.A.,	and T	rojan,	P.K.,	Engi	neeri	ng Ma	aterial	s and	their A	Applica	ations, (4	th Editio
	Jaico	, 1999.		Ū		-		-						
R4.		ge E.D		Mecha	nical	Meta	llurgy	, Mc	Graw	Hill, 1	1988			
R5.			-				0.)th Edi	ition) Ia	ico, 1999
								·						
R6.		ias п.	Court	ney, I	viecna	mcal	Della	avior	UI IVI	aterial	18, (21)		on), wie	Graw Hil
	2000													

INDUSTRIAL ROBOTICS AND EXPERT SYSTEMS

L	Т	Р	C 3			
3	0	0	3			

COURSE OBJECTIVES

To teach students the basics of robotics, construction features, sensor applications, robot cell design, robot programming and application of artificial intelligence and expert systems in robotics.

UNIT I

INTRODUCTION AND ROBOT KINEMATICS

9

Definition need and scope of Industrial robots – Robot anatomy and configurations – Work volume – Precision movement – End effectors – Sensors. Robot Kinematics – Direct and inverse kinematics – Robot trajectories – Control of robot manipulators – Robot dynamics – Methods for orientation and location of objects.

UNIT II

ROBOT DRIVES AND CONTROL

9

Controlling the Robot motion – Position and velocity sensing devices – Design of drive systems – Hydraulic and Pneumatic drives – Linear and rotary actuators and control valves – Electro hydraulic servo valves, electric drives – Motors – Designing of end effectors – Vacuum, magnetic and air operated grippers.

UNIT III	UNIT III ROBOT SENSORS					
Transducers and Sensors - Tactile sensor - Proximity and range sensors - Sensing joint forces						
- Robotic vision system - Image Representation - Image Grabbing -Image processing and						
analysis - Edge Enhancement - Contrast Stretching - Band Rationing - Image segmentation -						
Pattern recognition	Pattern recognition – Training of vision system.					

UNIT IV ROBOT CELL DESIGN AND APPLICATION

9

Robot work cell design and control – Safety in Robotics – Robot cell layouts – Multiple Robots and machine interference – Robot cycle time analysis. Industrial application of robots.

UNIT V		1MING, ARTIFICIAL IN D EXPERT SYSTEMS	NTELLIGENCE	9		
Methods of Robot Programming - Characteristics of task level languages lead through						
programming methods - Motion interpolation. Artificial intelligence - Basics - Goals of						
artificial intelligence – AI techniques – problem representation in AI – Problem reduction and						
solution techniques - Application of AI and KBES in Robots.						
Theory:45 Peri	ods Tutorial:	Practical:	Total:45 Period	ls		

COLU															
	RSE O				nts she	ould F	e abl	e to							
CO1 :		end of the course students should be able to Apply the working principle of robotics													
CO2 :	1				-				d in r	obots					
CO3 :		Demonstrate the different components used in robots Understand About the robot programming and AI													
CO4			and the			-	-	-	una 1						
CO5 :		ild a r		uppi.			10000	5							
	CO/P			<u>C (S/</u>		india	otos	tron	rth of	oorr	lation	<u>.</u>		CO/PS	
	CO/FC	JMA			ng, 2-					COLLE)			
CO					RAM								r	Mappin PSOs	-
	PO	PO	PO	PO	PO	PO	PO		PO	PO	PO	PO	PS	PS PS	PS
S CO1	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
C01		2	3	-		2							2		
CO2		1	3	2		1							1		
CO3		2	2			2							2		
CO4		2	2		1	2							2		
CO5	3	1	2		2								2		
REFF	EREN	CE BC	OOKS												
R1.	Deb, S	S.R." F	Roboti	cs Te	chnol	ogy a	nd Fle	exible	Auto	matio	n", Ta	ta Mc	Graw-	Hill, 1	994.
R2.	K.S.Fu	ı, R.C	C. Go	nzale	z and	1 C.S	S.G.	Lee,	"Rob	otics	Contr	ol, Se	ensing,	Visic	on and
	Intellig	gence'	', McC	Graw	Hill, 1	987.									
R3.	Mikel	, P. C	Groove	er, M	itchel	1 We	is, Ro	oger,	N. N	agel,	Nicho	las G.	Odre	y," Inc	lustria
	Robot	ics Te	chnolo	ogy, P	rogra	mmin	ig and	l App	licatio	ons", N	Ac Gra	w-Hil	l, Int.	1986.	
R4.	Richar	d. D,	Klafte	er, Th	omas,	A, C	Chmie	lewsk	i, Mi	chael	Negin	, "Rob	otics I	Engine	ering -
	An Int	egrate	d App	oroach	ı", Pre	entice	-Hall	of Ind	lia Pv	rt. Ltd	., 1984	ŀ.			
R5.	Timot	hy Jor	danid	es et	al ,"E	xpert	Syst	ems a	nd R	obotic	cs ", \$	Spring	er –Ve	erlag,	New
	York,	-			,	·	2				,	. 0		U,	
	,														

ADVANCED ANALYSIS AND SIMULATION LABORATORY

L	Т	Р	С
0	0	4	2

COURSE OBJECTIVES

> To give exposure to software tools needed to analyze engineering problems.

> To expose the students to different applications of simulation and analysis tools.

	SIMULATION
1	MATLAB basics, Dealing with matrices, Graphing-Functions of one variable and two
	variables
2	Use of Matlab to solve simple problems in vibration
3	Mechanism Simulation using Multibody Dynamic software

	ANALYSIS
1	Force and Stress analysis using link elements in Trusses, cables etc.
2	Stress and deflection analysis in beams with different support conditions.
3	Stress analysis of flat plates and simple shells.
4	Stress analysis of axi – symmetric components.
5	Thermal stress and heat transfer analysis of plates.
6	Thermal stress analysis of cylindrical shells.
7	Vibration analysis of spring-mass systems.
8	Model analysis of Beams.
9	Harmonic, transient and spectrum analysis of simple systems.

COURSE OUTCOME
Upon completion of this course the student can able to
• Create model, analyse and simulate experiments to meet real world system and evaluate
the performance.

Theory: 0Tutorial: 0	Practical: 60 Periods	Total: 60 Periods
----------------------	-----------------------	-------------------

21CC112	CAD LABORATORY	L	Т	Р	С		
2100112		0	0	4	2		
COURSE OBJECTIVES							

To impart knowledge on how to prepare drawings for various mechanical components using any commercially available 3D modeling software's.

CAD LABORATORY

SYLLABUS

- CAD Introduction.
- Sketcher
- Solid modeling –Extrude, Revolve, Sweep, etc and Variational sweep, Loft ,etc
- Surface modeling –Extrude, Sweep, Trim ..etc and Mesh of curves, Free form etc
- Feature manipulation Copy, Edit, Pattern, Suppress, History operations etc.
- Assembly-Constraints, Exploded Views, Interference check
- Drafting-Layouts, Standard & Sectional Views, Detailing & Plotting.
- CAD data Exchange formats- IGES, PDES, PARASOLID, DXF and STL

Exercises in Modeling and drafting of Mechanical Components - Assembly using Parametric

and feature based Packages like PRO-E / SOLID WORKS /CATIA / NX etc

COURSE OUTCOME

Upon completion of this course the student can able to

• With laboratory classes, it helps the students to get familiarized with the computer applications in design and preparing drawings for various mechanical components.

Theory: 0	Tutorial: 0	Practical: 45 Periods	Total: 45 Periods
-----------	-------------	-----------------------	-------------------

RESEARCH METHODOLOGY (Common to all PG Programmes)

Objectives:

- 1. Ability to critically evaluate current research and propose possible alternate methods for further work.
- 2 Ability to develop hypothesis / Problem Statement and methodology for research.
- 3. Ability to comprehend and deal with complex research issues in order to communicate their scientific results clearly for peer review.

Unit I: Introduction to research methodology

Meaning of Research, Types of Research, Research Process, Problem definition, Objectives of Research, Research Questions, Research design, Approaches to Research, Quantitative vs. Qualitative Approach, Understanding Theory, Building and Validating Theoretical Models, Exploratory vs. Confirmatory Research, Experimental vs Theoretical Research, Importance of reasoning in research.

Unit II: Literature review

Problem Formulation, Understanding Modeling & Simulation, Conducting Literature Review, Referencing, Information Sources, Information Retrieval, Role of libraries in Information Retrieval, Tools for identifying literatures, Indexing and abstracting services, Citation indexes

Unit III: Data collection and sampling design

Experimental Research: Cause effect relationship, Development of Hypothesis, Measurement Systems Analysis, Error Propagation, Validity of experiments, Statistical Design of Experiments, Field Experiments, Data/Variable Types & Classification, Data collection, Numerical and Graphical Data Analysis: Sampling, Observation, Surveys, Inferential Statistics, and Interpretation of Results

Unit IV: Research reports

Preparation of Dissertation and Research Papers, Tables and illustrations, Guidelines for writing the abstract, introduction, methodology, results and discussion, conclusion sections of a manuscript. References, Citation and listing system of documents

Unit V: Intellectual property rights (IPR) and Patents

Intellectual property rights (IPR) - patents-copyrights-Trademarks-Industrial design geographical indication. Ethics of Research- Scientific Misconduct- Forms of Scientific Misconduct. Plagiarism, Unscientific practices in thesis work, Ethics in science

Course Outcomes (COs): Upon completion of the course, the student should be able to:

- CO1: Recognize the importance of literature review.
- CO2: Identify the different types of research.
- CO3: Formulate problem statement and develop mathematical models for different problems.
- CO4: Formulate methodology of research and experimental analysis.
- CO5: Analyze the results using statistical methods, interpretation of results with reference to similar research outcomes.
- CO6: Prepare technical reports and research papers.

Text Books

- T1 C.R. Kothari, Research Methodology Methods and Techniques, 2nd Revised edition, New Age
- T2 R. Panneerselvam, "Research Methodology", PHI 2004.

Reference Books

- R1. Deepak Chawla, Neena Sodhi "Research Methodology concepts and cases "2nd edition, Vikas Publishing house pvt ltd.
- R2. Michael Quinn Patton "Qualitative Research & Evaluation Methods" 3rd edition, Sage Publications .
- R3. Paul D. Leedy, Jeanne Ellis Ormrod "Practical Research: Planning and Design", Prentice Hall

DESIGN FOR MANUFACTURE, ASSEMBLY AND ENVIRONMENTS

L	Т	Р	С
3	0	0	3

9

COURSE OBJECTIVES

> To know the concept of design for manufacturing, assembly and environment.

> To know the computer application in design for manufacturing and assembly.

UNIT I	INTRODUCTION	9					
General design principles for manufacturability - strength and mechanical factors, mechanisms							
selection, evaluation method, Process capability - Feature tolerances Geometric tolerances -							
Assembly limits -Datum features - Tolerance stacks.							
UNIT II	FACTORS INFLUENCING FORM DESIGN	9					

Working principle, Material, Manufacture, Design- Possible solutions - Materials choice – Influence of materials on form design - form design of welded members, forgings and castings.

UNIT III	COMPONENT DESIGN - MACHINING CONSIDERATION	9
----------	--	---

Design features to facilitate machining - drills - milling cutters - keyways - Doweling procedures, counter sunk screws - Reduction of machined area- simplification by separation - simplification by amalgamation - Design for machinability - Design for economy - Design for clampability – Design for accessibility - Design for assembly – Product design for manual assembly - Product design for automatic assembly – Robotic assembly..

UNIT IV COMPONENT DESIGN – CASTING CONSIDERATION

Redesign of castings based on Parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores. Identification of uneconomical design - Modifying the design - group technology - Computer Applications for DFMA

UNIT V	DESIGN FOR THE ENVIRONMENT	9
Introduction – E	nvironmental objectives - Global issues - Regional and local issues -	Basic
DFE methods -	Design guide lines - Example application - Lifecycle assessment -	Basic
method – AT&T	's environmentally responsible product assessment - Weighted sum asses	sment
method – Lifecy	cle assessment method – Techniques to reduce environmental impact – I	Design
to minimize mat	terial usage – Design for disassembly – Design for recyclability – Design	gn for
manufacture – D	esign for energy efficiency – Design to regulations and standards.	

Theory:45	Tutorial:	Practical:	Total:45 Periods
COURSE OUT	COMES		
At the end of the	course students should be	e able to	

CO1	: S	Select of material, manufacturing process and mechanism for a product Design a component by considering the form design and machining													
CO2	: D	Design a component by considering the form design and machiningDesign a component by considering machining process													
CO3	: D	esign a	comp	onent	by co	onside	ering	nachi	ning	proces	SS				
CO4	: D	Design a component based on casting considerations													
CO5	: D	esign a	eco-fi	riendl	y proo	duct									
	CO/I	O MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	elation)	•	CO/PS	0
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				I	Aappi	ng
CO			1	ROGI		1	1	1	Ì	r í	1			PSOs	
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS O3
CO	1 2	2	3				2		2					2	
CO	2 2	2	3				2		2					2	
CO.	3 2	2	3				2		2					2	
CO4	1 2	2	3				2		2					2	
CO	5 2	2	3				3		2					2	
REF	EREN	CE BO	OOKS												
R1.				80 De	sign	for A	ssemł	oly A	utoma	ation a	and Pro	oduct	Desigr	n. New	York,
	Marc	el Dekl	ker.												
R2.	Boot	hroyd, (G, Hea	artz ar	nd Nil	ke, Pr	oduct	Desig	gn for	Manı	ıfactur	e, Ma	rcel De	ekker, 1	1994.
R3.	Brall	a, Desi	gn for	Manu	Ifactu	re har	ndboo	k, Mo	Graw	v hill,	1999.				
R4.	Dick	son, Jo	hn. R,	and	Corro	da Po	oly, E	Ingine	ering	Desi	gn and	Desi	gn for	Manu	facture
	and S	tructur	al App	proach	n, Fiel	d Sto	ne Pu	blishe	er, US	SA, 19	95.				
R5.	Fixel	, J. Des	sign fo	r the l	Enviro	onme	nt Mc	Graw	Hill.	, 1996	•				
R6.	Grae	del T.	Allen	By. B	, Des	ign f	or the	Envi	ironm	ent A	ngle V	Vood (Cliff, I	Prentic	e Hall.
	Reas	on Pub.	., 1996	ó .											
R7.	Harr	Peck	, Desig	gning	for m	anufa	cture,	Pitm	an– 1	973					
R8.	Kevi	n Otto	and K	ristin	Wood	l, Pro	duct l	Desig	n. Pea	arson l	Publica	ation,	(Fourth	n Impro	ession)
	2009														

ADDITIVE MANUFACTURING AND TOOLING

L	Т	Р	С
3	0	0	3

COURSE OBJECTIVES

To educate students with fundamental and advanced knowledge in the field of Additive manufacturing technology and the associated Aerospace, Architecture, Art, Medical and industrial applications

INTRODUCTION

9

Need - Development of AM systems – AM process chain - Impact of AM on Product Development - Virtual Prototyping- Rapid Tooling – RP to AM -Classification of AM processes-Benefits- Applications.

UNIT II	
---------	--

CAD MODELING

9

Basic concept-- Data Processing for Rapid Prototyping: CAD model preparation, Data requirements – Geometric modeling techniques: Wire frame, surface and solid modeling – data formats - Data interfacing, Part orientation and support generation, Support structure design, Model Slicing, Tool path generation-Software for AM- Case studies.

UNIT III

LIQUID BASED AND SOLID BASED ADDITIVE MANUFACTURING SYSTEMS

9

9

Stereolithography Apparatus (SLA): Principle, pre-build process, part-building and post-build processes, photo polymerization of SL resins, part quality and process planning, recoating issues, materials, advantages, limitations and applications. Solid Ground Curing (SGC): working principle, process, strengths, weaknesses and applications. Fused deposition Modeling (FDM): Principle, details of processes, process variables, types, products, materials and applications. Laminated Object Manufacturing (LOM): Working Principles, details of processes, process, process, process estudies.

UNIT IV POWDER BASED ADDITIVE MANUFACTURING SYSTEMS

Selective Laser Sintering (SLS): Principle, process, Indirect and direct SLS- powder structures, materials, post processing, surface deviation and accuracy, Applications. Laser Engineered Net Shaping (LENS): Processes, materials, products, advantages, limitations and applications– Electron Beam melting- Case Studies.

UNIT V		TOOLING						
Classification	n, Soft too	ling, Production	on too	ling, Bri	dge tooling,	direct and	indirect	tooling,
Fabrication	processes,	Applications	Case	studies	automotive,	aerospace	and ele	ectronics

indus	tries															
Th	eory	:45		,	Tutor	rial:			Pı	actic	al:		To	otal:45	Perio	ds
COU	RSE	C OU	UTC	OMES	5			1								
At the	e end	lof	the c	ourse s	studer	nts sho	ould b	e abl	e to							
CO1	:	Und	lersta	nd his	tory, o	conce	pts ar	nd ter	minol	ogy o	f addi	tive m	anufac	turing		
CO2	:	App	oly th	e cad 1	nodel	lling o	conce	pts fo	r desi	gn de	velopi	nent				
CO3	:	Understand the variety of additive manufacturing techniques														
CO4	:	Design and develop newer tooling models														
CO5	:	Ana	lyse	the ca	ises re	elevar	nt to n	nass c	custon	nizati	on and	l some	of the	impo	rtant re	esearch
		chal	lleng	es asso	ciated	d with	n AM	and i	ts data	a proc	essing	g tools				
	CO	/PO	MA	PPIN	G (S/I	M/W	indic	ates s	streng	gth of	corre	elation)	(CO/PS	0
				3.	Stroi	ng, 2-	Mode	erate,	1-Fa	ir				N	Mappi	ng
CO				PI	ROGI	RAM	ME ()UT(COM	ES (P	Os)		1		PSOs	5
s	P	0	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO	1	2		3		2	U	,	2	2	10		12	2		05
CO	2	2		2		3			2	2				2		
CO	3	2		1		3			2	1				2		
CO	4	2		1		2			3	1				2		
CO	5	2		2		2			3	2				2		
REF	ERE	NC	E B(OOKS								I			1	
R1.	Chu	ıa, C	С. К. ,	Leong	g K.F.	and	Lim (C.S., '	'Rapi	d prot	totypiı	ng: Pri	nciple	s and a	applica	tions",
	sec	ond	editi	on, Wo	orld S	cienti	fic Pu	ıblish	ers, 2	010.						
R2.	Geł	ohar	dt, A	, "Rap	oid pr	ototy	ping",	, Hans	ser Ga	ardene	er Pub	licatio	ns, 200	03.		
R3.	Gib	son	IF	Rosen	DW	and	Stucke	er B	"Ad	ditive	Manı	Ifactur	ing Ma	ethodo	logies	Rapid
RJ.				to Dire									1116 1010	emodo	105105.	Rupiu
R4.			1 0			0			0	1	0		d Indu	strial	Applic	ations,
1111				2005.	ucobs	,	, N up	10 10	onng	. 100	linoiog	Sies un	a mac	suitui	rippite	utions,
R5.		•			d Na	sr E	<u> </u>	Rani	d Pro	totyn	ino [.] T	heory	and 1	oractic	e" Sn	ringer,
	200		, 11	ul	110	, L	•* ••9	rupi	ы I I U	yp		y	und j		- ,	
R6.			W	and L	ion F	F W	"Ran	id Pr	ototyr	ning a	nd Fr	noinee	ring ar	mlicat	ions ·	A tool
110.				otype of			-		• •	-	inu El	ignicel	ing af	philat	10115 .	A 1001
	JUX	101	prot	orype (10 V C I (pinel	л , С	NC P	1035, 2	2011.						

21CC211	DESIGN PROJECT	L	Т	Р	C
		0	0	4	2
COURSE OBJI	ECTIVES				

It is proposed to carryout detailed design calculations and analysis of any mechanical component or mechanical system. This helps the students to get familiar with respect to the design methodologies applied to any component or mechanical system subjected to static, dynamic and thermo-mechanical loads.

Each student is required to select any new component or an integrated mechanical system that involves various sub components which are to be designed as per design standards and further required to be analyzed for optimum dimensions with respect to the strength and stiffness.

COURSE OUTCOME

• It helps the students to get familiarized with respect to design standards, design calculations and analysis in designing any mechanical component or system.

Theory: 0	Tutorial: 0	Practical: 60 Periods	Total: 60 Periods	
-----------	-------------	-----------------------	-------------------	--

21CC212	CAM LABORATORY	L	Т	Р	С
		0	0	4	2
COURSE OBJI					
	ize students with manual CNC part programming for	milli	ng a	nd ti	urning
machines.					
To generate	part programs using CAM packages for milling and turnin	g ma	chine	es.	
	idents with dimensional and geometric measurements for	or ma	chine	ed fe	atures
using video	measuring system and coordinate measuring machine.				
-	ls on knowledge on programming logic controller - ladd	er pr	ograr	nmin	ig and
robot progra	mming.				
> To introduce	e the concept of printing parts using additive manufactur	ing a	and to	o intr	oduce
relational da	tabase management system in Material requirements planr	ing.			
	CAM LABORATORY				
SYLLABUS					
1. Programming	and simulation for various operations using canned cyc	cle fo	or Cl	NC to	urning
Centre.					
2. Programming	and simulation for machining of internal surfaces in CNC	turni	ng Ce	entre	
3. Programming	and simulation for profile milling operations				
4. Programming	and simulation for circular and rectangular pocket milling				
5. Programming tapping cycle	and simulation using canned cycle for CNC Milling such	as p	eck d	lrillir	ig and
6. CNC code ger	neration using CAM software packages – Milling				
7. CNC code ger	neration using CAM software packages – Turning				
8. Dimensional a	and geometric measurement of machined features using VI	AS a	nd Cl	MM	
9. PLC ladder l	ogic programming.				
10. Robot progra	umming for Material handling applications.				
11. Study on RD	BMS and its application in problems like inventory contro	l MR	P.		
12. Design and f	abrication of a component using extrusion based additive r	nanu	factu	ring.	
	EQUIPMENTS FOR CAM LAB				
1 Computers	30				

3	CNC Production type turning or Machining center
4	Video Measuring System
5	Coordinate Measuring Machine
6	Surface Roughness tester
7	5 -axis Robot
8	Programmable Logic Controller with ladder logic programming software
9	RDMBS Package with relevant modules like Inventory Control and MRP
10	3D Printer

Theory: 0	Tutorial: 0	Practical: 45 Periods	Total: 45 Periods	
-----------	-------------	-----------------------	-------------------	--

SEMESTER III

21CC301 OPTIMIZATION TECHNIQUES IN DESIGN

COURSE OBJECTIVES

To impart knowledge on various categories of existing engineering problems and solutions to such problems through different optimization techniques and approaches.

THEORY COMPONENT CONTENTS

UNIT I UNCONSTRAINED OPTIMIZATION TECHNIQUES

Introduction to optimum design - General principles of optimization – Problem formulation & their classifications - Single variable and multivariable optimization, Techniques of unconstrained minimization – Golden section, Random, pattern and gradient search methods – Interpolation methods.

UNIT II CONSTRAINED OPTIMIZATION TECHNIQUES

Optimization with equality and inequality constraints - Direct methods – Indirect methods using penalty functions, Lagrange multipliers - Geometric programming.

UNIT III ADVANCED OPTIMIZATION TECHNIQUES

Multi stage optimization – dynamic programming; stochastic programming; Multi objective optimization, Genetic algorithms and Simulated Annealing techniques; Neural network & Fuzzy logic principles in optimization.

UNIT IV STATIC APPLICATIONS

Structural applications – Design of simple truss members - Design applications – Design of simple axial, transverse loaded members for minimum cost, weight – Design of shafts and torsionally loaded members – Design of springs

UNIT V DYNAMIC APPLICATIONS

Dynamic Applications – Optimum design of single, two degree of freedom systems, vibration absorbers. Application in Mechanisms – Optimum design of simple linkage mechanisms

Theory:45Tutorial:0Practical:0Project:0Total:45 periods

COURSE OUTCOMES

It helps the students to get familiarized with the different approaches of optimizing (maximizing or minimizing) an engineering problem or a function

REFERENCE BOOKS

- 1. Goldberg, D.E., "Genetic algorithms in search, optimization and machine", Barnen, Addison-Wesley, New York, 1989.
- 2. Johnson Ray, C., "Optimum design of mechanical elements", Wiley, John & Sons, 1990.
- 3. Kalyanamoy Deb, "Optimization for Engineering design algorithms and Examples", Prentice Hall of India Pvt. 1995.
- 4. Rao, Singaresu, S., "Engineering Optimization Theory & Practice", New Age International (P) Limited, New Delhi, 2000.

20ME302 DESIGN FOR CELLULAR MANUFACTURING L T P C SYSTEMS 3 0 0 3

COURSE OBJECTIVES

At the end of this course the student should be able to understand

- Concepts and applications of Cellular manufacturing systems
- Traditional and non-traditional approaches of Problem-solving Performance measurement
- Human and economic aspects of CMS.

THEORY COMPONENT CONTENTS

UNIT I INTRODUCTION

Introduction to Group Technology, Limitations of traditional manufacturing systems, characteristics and design of groups, benefits of GT and issues in GT.

2

0 0 3

Ρ

L

3

Т

С

10

10

10

8

7

UNIT II CMS PLANNING AND DESIGN

Problems in GT/CMS - Design of CMS - Models, traditional approaches and non-traditional approaches -Genetic Algorithms, Simulated Annealing, Neural networks.

UNIT III IMPLEMENTATION OF GT/CMS

Inter and Intra cell layout, cost and non-cost-based models, establishing a team approach, Managerial structure and groups, batch sequencing and sizing, life cycle issues in GT/CMS.

UNIT IV PERFORMANCE MEASUREMENT AND CONTROL

Measuring CMS performance - Parametric analysis - PBC in GT/CMS, cell loading, GT and MRP - framework.

UNIT V ECONOMICS OF GT/CMS

Conventional Vs group use of computer models in GT/CMS, Human aspects of GT/CMS - cases.

Theory:45 Tutorial:0 Practical:0 Project:0 Total:45 periods

COURSE OUTCOMES

To impart knowledge on group technology, optimization algorithms, implementation of GT/CMS, Performance measurements and economical aspects of CMS.

REFERENCE BOOKS

- Askin, R.G. and Vakharia, A.J., G.T " Planning and Operation, in the automated factory-Hand
- 2. Book: Technology and Management ", Cleland.D.I. and Bidananda, B (Eds), TAB Books, NY, 1991
- 3. Burbidge, J.L. Group "Technology in Engineering Industry", Mechanical Engineering pub.London, 1979.
- 4. Irani, S.A. " Cellular Manufacturing Systems ", Hand Book
- 5. Kamrani, A.K, Parsaei, H.R and Liles, D.H. (Eds), " Planning, design and analysis of cellular manufacturing systems ", Elsevier, 1995

20ME303	INDUSTRIAL SAFETY MANAGEMENT	L	т	Ρ	С
3			0	0	3

COURSE OBJECTIVES

To achieve an understanding of principles of safety management.

- To enable the students to learn about various functions and activities of safety department.
- To enable students to conduct safety audit and write audit reports effectively in auditing situations.
- To have knowledge about sources of information for safety promotion and training.
- To familiarize students with evaluation of safety performance

THEORY COMPONENT CONTENTS

UNIT I SAFETY MANAGEMENT

Evaluation of modern safety concepts - Safety management functions - safety organization, safety department - safety committee, safety audit - performance measurements and motivation - employee participation in safety - safety and productivity

UNIT II OPERATIONAL SAFETY

Hot metal Operation - Boiler, pressure vessels - heat treatment shop - gas furnace operation - electroplating-hot bending pipes - Safety in welding and cutting. Cold-metal Operation - Safety in Machine shop - Cold bending and chamfering of pipes - metal cutting - shot blasting, grinding, painting - power press and other machines.

UNIT III SAFETY MEASURES

Layout design and material handling - Use of electricity - Management of toxic gases and chemicals -Industrial fires and prevention - Road safety - highway and urban safety - Safety of sewage disposal and cleaning - Control of environmental pollution - Managing emergencies in Industries - planning, security and risk assessments, on- site and off site. Control of major industrial hazards.

9 tv

9

9

10

10

8

5

UNIT IV ACCIDENT PREVENTION

Human side of safety - personal protective equipment - Causes and cost of accidents. Accident prevention programmes - Specific hazard control strategies - HAZOP - Training and development of employees - First Aid- Firefighting devices - Accident reporting, investigation.

UNIT V SAFETY, HEALTH, WELFARE & LAWS

Safety and health standards - Industrial hygiene - occupational diseases prevention - Welfare facilities - History of legislations related to Safety-pressure vessel act-Indian boiler act - The environmental protection act - Electricity act - Explosive act.

Theory:45Tutorial:0Practical:0Project:0Total:45 periods

COURSE OUTCOMES

- To understand the functions and activities of safety engineering department.
- To carry out a safety audit and prepare a report for the audit.
- To prepare an accident investigation report.
- To estimate the accident cost using supervisors report and data.
- To evaluate the safety performance of an organization from accident records.
- To identify various agencies, support institutions and government organizations involved in safety training and promotion.

REFERENCE BOOKS

- 1. Industrial safety and the law by P.M.C. Nair Publisher's, Trivandrum
- 2. John V. Grimaldi and Rollin H. Simonds, "Safety Management", All India Travellers bookseller, New Delhi-1989.
- 3. Krishnan N.V., "Safety in Industry", Jaico Publisher House, 1996
- 4. Managing emergencies in industries, Loss Prevention of India Ltd., Proceedings, 1999.
- 5. Occupational Safety Manual BHEL.
- 6. Safety security and risk management by U.K. Singh & J.M. Dewan, A.P.H. Publishing company, New Delhi, 1996.
- 7. Singh, U.K. and Dewan, J.M., "Safety, Security and risk management", APH Publishing Company, New Delhi, 1996.

9

9

21PCC01	COMPETITIVE MANUFACTURING SYSTEMS	L	Т	Р	C
		3	0	0	3

COURSE OBJECTIVES

To emphasize the knowledge on the quality improvement, automation, and advanced manufacturing techniques to create the highest-caliber products quickly, efficiently, inexpensively, and in synchronization with the marketing, sales, and customer service of the company.

UNIT I

MANUFACTURING IN A COMPETITIVE ENVIRONMENT

9

9

Automation of manufacturing process - Numerical control - Adaptive control - material handling and movement - Industrial robots - Sensor technology - flexible fixtures - Design for assembly, disassembly and service.

	GROUP TECHNOLOGY & FLEXIBLE MANUFACTURING	I
UNIT II	SYSTEMS	

Part families - classification and coding - Production flow analysis - Machine cell design -Benefits. Components of FMS - Application work stations - Computer control and functions -Planning, scheduling and control of FMS - Scheduling - Knowledge based scheduling -Hierarchy of computer control - Supervisory computer.

UNIT III	COMPUTER SOFTWARE, SIMULATION AND DATABASE	0
	OF FMS	9

System issues - Types of software - specification and selection - Trends - Application of simulation - software - Manufacturing data systems - data flow - CAD/CAM considerations - Planning FMS database.

UNIT IV	LEAN MANUFACTURING	9
Origin of lean pro	oduction system – Customer focus – Muda (waste) – Standards – 5S sys	tem –
Total Productive	Maintenance - standardized work - Man power reduction - Overall efficiency	ciency
- Kaizen – Com	mon layouts - Principles of JIT - Jidoka concept - Poka-Yoke (m	istake
proofing) - Wor	ker Involvement- Quality circle activity - Kaizen training - Sugg	estion
Programmes – Ho	oshin Planning System (systematic planning methodology) – Lean culture	e.
UNIT V	JUST IN TIME	9

Characteristics of JIT - Pull method - quality -small lot sizes - work station loads - close supplier ties – flexible work force - line flow strategy - preventive maintenance - Kanban

systen	n - stra	tegic i	mplica	ations	- imp	leme	ntatio	n issu	ies - I	Lean m	anufa	cture.			
Th	eory:4	5		Tuto	rial:			Pı	actic	al:		Т	otal:4	5 Hou	rs
COU	RSE O	UTC	OMES	5											
At the	end of	f the co	ourse s	studer	nts sho	ould t	be able	e to							
CO1 :	: Ur	Idersta	nd and	l expl	ain aı	ıtoma	tion o	of mai	nufact	turing	proces	sses			
CO2	Ex	plain a	about j	part fa	milie	S									
CO3	: Di	scuss t	the cor	npone	ents o	f FM	S and	the se	election	on and	specif	fication	n of FN	MS sof	tware
CO4 :	: To	impa	rt knov	vledg	e on t	he pa	ce of	chang	ges in	the ma	anufac	turing	techno	ology	
CO5 :	: Ur	ndersta	nd and	d disc	uss JI	Т									
	CO/P	O MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	lation)		CO/PS	0
			3	-Stroi	ng, 2-	Mod	erate,	1-Fa	ir				N	Aappi	ng
CO		T		ROGI	1	1	1	1	· `	r í	ſ	T		PSOs	
s	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS 03
C01	3		2			3							3		
CO2	2		2			3							2		
CO3	2		3			2							3		
CO4	3		2			3							1		
CO5	2		3			3							2		
REFE	EREN	CE BC	OKS				•		•						
R1.	Groov	ver N	1.P.,	"Auto	omati	on,	Produ	iction	Sy	stems	and	Con	nputer	Integ	grated
	Manu	facturi	ng ", 7	Third	Editic	on, Pr	entice	-Hall	, 2007	7.					
R2.	Jha, N	I.K. "H	Iandbo	ook of	Flex	ible N	/lanuf	acturi	ng Sy	/stems	", Aca	ademic	e Press	Inc., 1	.991.
R3.	Kalpk	jian, "	Manu	factur	ing E	ngine	eering	and	Techı	nology	, ", Ac	ldison	-Wesle	ey Pub	lishing
	Co., 1	995.													
R4.	Pascal	Denr	nis, "L	ean I	Produ	ction	Simp	lified	: A I	Plain-I	Langua	ige Gi	uide to	the V	World's
	Most	Power	ful Pr	oduct	tion S	Syster	n", (S	Secon	d edi	tion),	Produ	ctivity	Press	, New	York,
	2007.														
R5.	Taiich	i Ohn	o, Toy	ota F	roduc	ction	Syste	m Be	yond	Large	-Scale	Produ	uction,	Produ	ıctivity
	Press,	1988													

21PCC0	02	COMPUTER CONTROL	IN PROCESS		L	Т	Р	C
		PLANNIN	Ĵ		3	0	0	3
COURS	E OBJE	CTIVES			l			
To provi	de the s	tudent with an understanding of	the importance	of proc	ess p	olann	ing 1	role in
manufact	turing ar	nd the application of Computer A	Aided Process	Planning	too]	l in	the p	present
manufact	turing sc	enario.						
UNI	TI	INTRO	DUCTION					9
The Plac	e of Pro	cess Planning in the Manufacturin	ng cycle - Proc	ess Plan	ning	and	Prod	luction
Planning	– Proces	ss Planning and Concurrent Engine	ering, CAPP, C	Group Te	chno	ology	•	
UNI	ГИ	PART DESIGN	REPRESENTA	ATION				9
Design D	Drafting -	Dimensioning - Conventional tole	erance - Geome	etric toler	ance	- CA	D -	input /
output d	evices -	topology - Geometric transform	ation - Perspe	ective tra	ansfo	rmat	ion ·	- Data
structure	- Geom	etric modelling for process plann	ing - GT codin	ng - The	e opti	iz sy	stem	- The
MICLAS	SS system	n.						
	•	n. PROCESS ENGINEERING	G AND PROC	ESS PLA	ANN	ING		9
MICLAS UNIT	r III							
MICLAS UNII Experien	F III ced, base	PROCESS ENGINEERING	lecision trees -	Process	capa	bility	/ ana	lysis -
MICLAS UNIT Experien Process I	F III ced, base Planning	PROCESS ENGINEERING ed planning - Decision table and o	lecision trees -	Process	capa	bility	/ ana	lysis -
MICLAS UNIT Experien Process I	F III ced, base Planning , Input fo	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger	lecision trees - nerative approa	Process ach - For	capa ward	bility	/ ana	lysis -
MICLAS UNIT Experien Process I planning, UNIT	Γ III iced, base Planning , Input fc Γ IV	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Gen prmat, Al.	lecision trees - nerative approa	Process ach - For NING SY	capa ward	bility l and E MS	/ ana Bac	lysis - kward 9
MICLAS UNIT Experien Process I planning, UNIT Logical I	Γ III ced, base Planning , Input fc Γ IV Design o	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Gen ormat, Al. COMPUTER AIDED PRO	lecision trees - nerative approa CESS PLANN ation considera	Process ach - For NING SY ations -m	capa ward	bility and E MS	y ana Bac	lysis - kward 9 system
MICLAS UNIT Experient Process I planning, UNIT Logical I compone	Γ III ced, base Planning , Input fc Γ IV Design o ents, pro	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement	lecision trees - nerative approa CESS PLANN ation considera	Process ach - For NING SY ations -m	capa ward	bility and E MS	y ana Bac	lysis - kward 9 system
MICLAS UNIT Experient Process I planning, UNIT Logical I compone	F III Iced, base Planning , Input fo F IV Design o ents, pro AUTOP	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc	lecision trees - nerative approa CESS PLANN ation considera tion families -	Process ach - For NING SY ations -m - CAM-I	capa ward (STH hanuf I, CA	bility and E MS actur	y ana Bac	lysis - kward 9 system
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT	F III Iced, base Planning , Input fo F IV Design o ents, pro AUTOP T V	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP.	lecision trees - nerative approa CESS PLANN ation considera tion families - CESS PLANN	Process ach - For NING SY ations -m - CAM-I	capa ward (STH hanuf I, CA	bility l and EMS actur APP,	y ana Bac ing s MII	ysis - kward 9 system PLAN
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i	F III Iced, base Planning , Input for F IV Design of ents, pro AUTOP T V integrate	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO	lecision trees - nerative approa CESS PLANN ation consideration families - CESS PLANN	Process ach - For NING SY ations -m - CAM-I	capa ward (STH hanuf I, CA	bility l and EMS actur APP,	y ana Bac ing s MII	ysis - kward 9 system PLAN, 9
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i	F III Iced, base Planning , Input for F IV Design of ents, pro AUTOP T V integrate e, operati	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO d process planning systems - A on - Report Generation, Expert pro	lecision trees - nerative approa CESS PLANN ation consideration families - CESS PLANN	Process ach - For NING SY ations -m - CAM-I ING SYS - Modul	capa ward (STH hanuf I, CA	bility I and EMS actur APP, IS truct	y ana Bac ing s MII	ysis - kward 9 system PLAN 9 - Data
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i Structure	T III iced, base Planning , Input fo T IV Design o ents, pro AUTOP T V integrate e, operati ty:45	PROCESS ENGINEERING ed planning - Decision table and o ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO of a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO d process planning systems - A on - Report Generation, Expert pro Tutorial:	lecision trees - nerative approa CESS PLANN ation consideration families - CESS PLANN An Overview - pcess planning.	Process ach - For NING SY ations -m - CAM-I ING SYS - Modul	capa ward (STH hanuf I, CA STEN us s	bility I and EMS actur APP, IS truct	y ana Bac ing s MII	ysis - kward 9 system PLAN 9 - Data
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i Structure Theor COURS	F III iced, base Planning , Input fo F IV Design o ents, pro AUTOP T V integrate e, operati cy:45 E OUTO	PROCESS ENGINEERING ed planning - Decision table and o ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO of a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO d process planning systems - A on - Report Generation, Expert pro Tutorial:	lecision trees - nerative approa CESS PLANN ation consideration families - CESS PLANN An Overview - pcess planning.	Process ach - For NING SY ations -m - CAM-I ING SYS - Modul	capa ward (STH hanuf I, CA STEN us s	bility I and EMS actur APP, IS truct	y ana Bac ing s MII	ysis - kward 9 system PLAN 9 - Data
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i Structure Theor COURS	F III ced, base Planning , Input for F IV Design of ents, pro AUTOP T V integrate e, operati cy:45 E OUTO d of the	PROCESS ENGINEERING ed planning - Decision table and o ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO d process planning systems - A on - Report Generation, Expert pro Tutorial: P COMES	lecision trees - nerative approa CESS PLANN ation consideration families - CESS PLANN an Overview - ocess planning. ractical:	Process ach - For NING SY ations -m - CAM-I ING SYS - Modul	capa ward 7 STH anuf I, CA STEN us s Fotal	EMS actur APP, IS tructur	y ana Bac ing s MII ure -	9 system PLAN Data
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i Structure Theor COURS At the en	F III iced, basi Planning , Input fo F IV Design o ents, pro AUTOP T V integrate e, operati ry:45 E OUTO d of the Explain	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO d process planning systems - A on - Report Generation, Expert pro Tutorial: P COMES course students should be able to	lecision trees - nerative approa CESS PLANN ation consideration families - CESS PLANN an Overview - ocess planning. ractical:	Process ach - For NING SY ations -m - CAM-I ING SYS - Modul	capa ward 7 STH anuf I, CA STEN us s Fotal	EMS actur APP, IS tructur	y ana Bac ing s MII ure -	9 system PLAN, 9 Data
MICLAS UNIT Experient Process I planning, UNIT Logical I compone APPAS, UNIT Totally i Structure Theor COURS At the en	T III ced, bass Planning Planning , Input fo T IV Design o ents, pro AUTOP T V integrate e, operati cy:45 E OUTO d of the Explain process	PROCESS ENGINEERING ed planning - Decision table and o - Variant process planning - Ger ormat, Al. COMPUTER AIDED PRO f a Process Planning - Implement duction Volume, No. of produc LAN and PRO, CPPP. AN INTERGRADED PRO d process planning systems - A on - Report Generation, Expert pro Tutorial: P COMES course students should be able to a process planning techniques us	lecision trees - herative approa CESS PLANN ation consideration families - CESS PLANNI An Overview - bcess planning. ractical:	Process ach - For NING SY ations -m - CAM-I ING SYS - Modul 7 - Modul	capa ward 7 STH anuf I, CA STEN us s Fotal	EMS actur APP, IS tructur	y ana Bac ing s MII ure -	9 system PLAN, 9 Data

CO4	: Ur	ndersta	ind and	duse	latest	proce	ess pla	nning	g softv	ware.							
CO5	: Ap	oply de	ecisior	n mak	ing p	roces	s for	appro	priate	e plan	ning io	iea ab	out va	rious p	proces		
	pla	anning	softw	are													
	CO/P	O MA	PPIN	G (S/	M/W	indic	ates s	treng	gth of	corre	elation)	(CO/PS	0		
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				N	Mapping			
CO			P	ROG	RAM	ME (OUTO	COM	ES (P	Os)				PSOs	5		
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3		
CO 1	1 3			3	2	3			3								
CO2	2 2			2	3	1			3								
CO	3 2			1	3	2			3								
CO ₂	1 3			2	1	2			2								
CO	5 3			2	2	3			3								
REF	EREN	CE BC	OKS														
R1.	Chang	g, T.C.	, " An	Expe	rt Pro	cess I	Planni	ng Sy	vstem	", Pre	ntice I	Hall, 1	985.				
R2.	Gideo	n Hal	evi ar	nd Ro	land	D. V	Veill,	" Pri	ncipl	es of	Proce	ss Pla	nning	", A	logica		
	appro	ach, (Chapm	nan &	Hall,	1995											
R3.								ompu	ter In	tegrat	ed Des	sign ar	nd Mar	nufactu	ring "		
		Wiley								•		C C			C		
R4.		•				factu	ring "	, Tata	McG	raw H	Iill Pul	olishin	g Co.,	2000.			
R5.	Tien-0	Chien	Chang	g. Ric	hard	A.Wv	vsk, "	An Iı	ntrodu	iction	to au	tomate	d prod	cess pl	annins		
	system		-			-	7						r · ·	r-			

21PCC0.	3	ADVANCED MECHANICS (OF MATERIA	LS	L	Т	Р	C
					3	0	0	3
COURSE	E OBJI	ECTIVES			1	1	I	
To know t	the fun	damentals of mechanics of materials	s under various l	loading	cond	lition	IS.	
UNIT	Ī	ELAS	ΓΙCITY					9
Stress-Stra	ain rel	ations and general equations of ela	asticity in Carte	esian, F	Polar	and	curv	ilinear
coordinate	es, di	fferential equations of equilib	orium-compatibi	ility-bo	unda	ry	cond	itions-
representa	ation of	f three-dimensional stress of a tens	sion generalized	d hook'	s lav	v - S	t. V	enant's
principle -	– plane	stress - Airy's stress function. Energ	gy methods.					
UNIT	II	SHEAR CENTER AND UN	SYMMETRIC	AL BE	NDI	NG		9
Location	of she	ar center for various thin sections	- shear flows. S	Stresse	s and	l Def	lecti	ons in
beams sub	ojected	to unsymmetrical loading-kern of a	section.					
UNIT	III	STRESSES IN FLAT PLATE	S AND CURV	ED MI	FMR	FDC		9
						EKS		,
Circumfer	rence a	nd radial stresses – deflections - cur						-
		nd radial stresses – deflections - cur	ved beam with 1	restrain	ed er	nds -	close	ed ring
subjected	to cor	centrated load and uniform load -	ved beam with r chain links and	restrain d crane	ed er e hoo	nds - oks. S	close Solut	ed ring ion of
subjected rectangula	to cor ar plate		ved beam with r chain links and	restrain d crane	ed er e hoo	nds - oks. S	close Solut	ed ring ion of
subjected	to cor ar plate tions	centrated load and uniform load -	ved beam with r chain links an tion – uniforml	restrain d crane y distri	ed er e hoo buteo	nds - oks. S	close Solut	ed ring ion of
subjected rectangula end condit UNIT	to cor ar plate tions IV	centrated load and uniform load - s – pure bending of plates – deflec TORSION OF NON-C	ved beam with r chain links an tion – uniformly TRCULAR SE	restrain d crane y distri CTION	ed er e hoo buteo	nds - oks. S 1 load	close Solut 1 — v	ed ring ion of various 9
subjected rectangula end condit UNIT	to cor ar plate tions IV f rectar	acentrated load and uniform load - es – pure bending of plates – deflec	ved beam with r chain links an tion – uniformly TRCULAR SE eory - elastic me	restrain d crane y distri CTION	ed er e hoo buteo	nds - oks. S 1 load	close Solut 1 — v	ed ring ion of various 9
subjected rectangula end condit UNIT	to cor ar plate tions IV f rectar	ncentrated load and uniform load - es – pure bending of plates – deflec TORSION OF NON-C ngular cross section - St.Venants the torsional stress in hollow thin walled	ved beam with r chain links and tion – uniformly TRCULAR SE eory - elastic me d tubes.	restrain d crane y distri CTION embran	ed er e hoo buteo NS e ana	nds - bks. S 1 load	close Solut 1 — v	ed ring ion of various 9
subjected rectangula end condit UNIT	to cor ar plate tions IV f rectan ction -	TORSION OF NON-C mgular cross section - St.Venants the STRESSES IN ROTATING	ved beam with r chain links and tion – uniformly TRCULAR SE eory - elastic me d tubes.	restrain d crane y distri CTION embran	ed er e hoo buteo NS e ana	nds - bks. S 1 load	close Solut 1 — v	ed ring ion of various 9
subjected rectangula end condit UNIT Torsion of stress func UNIT	to cor ar plate tions IV f rectan ction - V	TORSION OF NON-C mgular cross section - St.Venants the STRESSES IN ROTATING	ved beam with a chain links and tion – uniformly TRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES	restrain d crane y distri CTION embran	ed er e hoo buteo NS e ana	nds - oks. S d load alogy	close Solut 1 – v - Pr	ed ring ion of various 9 andtl's 9
subjected rectangula end condit UNIT Torsion of stress fund UNIT	to cor ar plate tions IV f rectan ction - V d tange	Accentrated load and uniform load - tes – pure bending of plates – deflec TORSION OF NON-C ngular cross section - St.Venants the torsional stress in hollow thin wallec STRESSES IN ROTATING T STRESSES IN ROTATING T STRESSES IN ROTATING T	ved beam with r chain links and tion – uniformly TRCULAR SE eory - elastic mo d tubes. MEMBERS AN ESSES of uniform thick	restrain d crane y distri CTION embran ND CO kness a	ed er e hoo buteo NS e ana DNTA	alogy ACT	closs Solut d – v - Pr	ed ring ion of various 9 andtl's 9 ckness
subjected rectangula end condit UNIT Torsion of stress fund UNIT Radial and allowable	to cor ar plate tions IV f rectan ction - V d tange	Accentrated load and uniform load - as – pure bending of plates – deflec TORSION OF NON-C Ingular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN CONTACTING STRESSES IN CONTACTING STRESSES IN CONTACTING STRESSES IN CONTACT ST	ved beam with r chain links and tion – uniformly TRCULAR SE eory - elastic mo d tubes. MEMBERS AN ESSES of uniform thick	restrain d crane y distri CTION embran ND CO kness a	ed er e hoo buteo NS e ana DNTA	alogy ACT	closs Solut d – v - Pr	ed ring ion of various 9 andtl's 9 ckness
subjected rectangula end condit UNIT Torsion of stress fund UNIT Radial and allowable contact ap	to cor ar plate tions IV f rectan ction - V d tange speeds oplicati	Accentrated load and uniform load - as – pure bending of plates – deflec TORSION OF NON-C Ingular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN CONTACTING STRESSES IN CONTACT STRESSES STRESSES IN CONTACT ST STRESSES IN CONTACT ST S. Methods of computing contact st ons.	ved beam with n chain links and tion – uniformly TRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES of uniform thick tress-deflection	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana ONTA nd va ies in	alogy ACT arying n poi	close Solut d – v - Pr g thi nt ar	ed ring ion of various 9 andtl's 9 ckness nd line
subjected rectangula end condit UNIT Torsion of stress fund UNIT Radial and allowable contact ap	to cor ar plate tions IV f rectan ction - V d tange speeds oplication :45	TORSION OF NON-C TORSION OF NON-C ngular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN CONTACTING STRESSES IN CONTACT ST STRESSES IN CONTACT ST STRESSES IN CONTACT ST CONTACT ST STRESSES IN CONTACT ST STRES	ved beam with r chain links and tion – uniformly TRCULAR SE eory - elastic mo d tubes. MEMBERS AN ESSES of uniform thick	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana DNTA	alogy ACT arying n poi	close Solut d – v - Pr g thi nt ar	ed ring ion of various 9 andtl's 9 ckness nd line
subjected rectangula end condit UNIT I Torsion of stress fund UNIT Radial and allowable contact ap Theory COURSE	to cor ar plate tions IV f rectar ction - V d tange speed oplicati :45 E OUT	TORSION OF NON-C TORSION OF NON-C ngular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN COTATING STRESSES IN COTAT	ved beam with n chain links and tion – uniformly TRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES of uniform thick tress-deflection	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana ONTA nd va ies in	alogy ACT arying n poi	close Solut d – v - Pr g thi nt ar	ed ring ion of various 9 andtl's 9 ckness nd line
subjected rectangula end condit UNIT I Torsion of stress fund UNIT Radial and allowable contact ap Theory COURSE At the end	to cor ar plate tions IV f rectan ction - V d tange speed: oplication :45 C OUT d of the	Incentrated load and uniform load - as – pure bending of plates – deflec TORSION OF NON-C Ingular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN CONTACT ST International stresses in solid disc and ring s. Methods of computing contact st ons. Tutorial: Pr COMES For course students should be able to	ved beam with n chain links and tion – uniformly TIRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES of uniform thick tress-deflection	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana ONTA nd va ies in Fotal	alogy ACT arying 1:45 I	close Solut d – v g thi nt ar Hour	ed ring ion of various 9 andtl's 9 ckness nd line 's
subjected rectangula end condit UNIT Torsion of stress fund UNIT Radial and allowable contact ap Theory COURSE At the end CO1 :	to cor ar plate tions IV f rectan ction - V d tange speed oplicati :45 E OUT d of the Unders	Accentrated load and uniform load - as – pure bending of plates – deflec TORSION OF NON-C Ingular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN CONTACT ST International stresses in solid disc and ring s. Methods of computing contact st ons. Tutorial: Pr COMES COURSS Course students should be able to stand and explain the concept of	ved beam with n chain links and tion – uniformly TIRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES of uniform thick tress-deflection	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana ONTA nd va ies in Fotal	alogy ACT arying 1:45 I	close Solut d – v g thi nt ar Hour	ed ring ion of various 9 andtl's 9 ckness nd line 's
subjected rectangula end condit UNIT I Torsion of stress fund UNIT T Radial and allowable contact ap Theory COURSE At the end	to cor ar plate tions IV f rectan ction - V d tange speed oplicati :45 E OUT d of the Unders equatio	TORSION OF NON-C TORSION OF NON-C ngular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES in solid disc and ring s. Methods of computing contact st ons. Tutorial: Pr COMES course students should be able to stand and explain the concept of on of elasticity	ved beam with n chain links and tion – uniformly TIRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES of uniform thick tress-deflection Factical:	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana ONTA nd va ies in Fotal	alogy ACT arying 1 poi	close Solut d – v g thi nt ar Houn nd §	ed ring ion of various 9 andtl's 9 ckness nd line s general
subjected rectangula end condit UNIT I Torsion of stress fund UNIT T Radial and allowable contact ap Theory COURSE At the end CO1 :	to cor ar plate tions IV f rectan ction - V d tange speed oplication :45 C OUT d of the Underst equation Design	Accentrated load and uniform load - as – pure bending of plates – deflec TORSION OF NON-C Ingular cross section - St.Venants the torsional stress in hollow thin walled STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN ROTATING STRESSES IN CONTACT ST International stresses in solid disc and ring s. Methods of computing contact st ons. Tutorial: Pr COMES COURSS Course students should be able to stand and explain the concept of	ved beam with n chain links and tion – uniformly TIRCULAR SE eory - elastic me d tubes. MEMBERS AN ESSES of uniform thick tress-deflection Factical:	restrain d crane y distri CTION embran ND CO kness a of bod	ed er e hoo buteo NS e ana ONTA nd va ies in Fotal	alogy ACT arying 1 poi	close Solut d – v g thi nt ar Houn nd §	ed ring ion of various 9 andtl's 9 ckness nd line s general

CO3	: De	sign s	shafts	to ti	ransm	it rec	quired	pow	ver a	nd to	desig	n the	rotary	v secti	ons in
	en	gineer	ing ap	plicat	ion.										
CO4	: Ar	alyze	the pr	oblem	ns in t	orsior	n of n	on cir	cular	cross	sectior	ıs			
CO5	: Ar	alyze	the p	robler	ns in	conta	ct stre	sses							
	CO/P	O MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	elation)	(CO/PS	0
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				I	Aappi	ng
CO		1	1				OUT (Ì	í í				PSOs	
s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS 03
COI	l 3		1			2				-					
CO2	2 2		2			2									
CO3	3 2		3			3									
CO4	3		2			2									
COS	5 3		2			3									
REFI	EREN	CE BC	OKS												
R1.	Allan	F. Bo	wer, "	Appli	ied M	[echar	nics o	f Sol	ids",	CRC]	press -	- Spec	ial Ind	lian Ec	lition -
	2012,	2010													
R2.	Arthu	r P Bo	oresi, İ	Richa	rd J.	Schm	nidt, "	Adva	nced	mech	anics of	of mat	terials"	,John	Wiley,
	2002.														
R3.	GHR	yder S	Streng	th of I	Mater	ials N	Iacmi	llan, I	India	Ltd, 2	007.				
R4.	K. Ba	skar a	nd T.	K. Va	aradar	n, "Th	neory	of Is	otropi	ic/Ortl	notropi	c Elas	sticity"	, Ane	Books
	Pvt. L	td., Ne	ew De	lhi, 20)09										
R5.	Rober	t D. C	ook, V	Varrei	n C. Y	loung	, "Ad	vance	ed Me	chani	cs of N	Iateria	ıls", M	c-milla	ın pub.
	Co., 1	985.													
R6.	Srinat	h. L.S.	., "Ad	vance	d Mee	chanio	cs of s	solids	", Tat	a McC	Graw H	Iill, 19	92.		
R7.	Timos	henko	and C	Goodie	er, "T	heory	of El	astici	ty", N	/IcGra	w Hill.				
		_				5			<i>.</i> /						

				3	0	0	3
COURSE OBJ	ECTIVES						
To expose the st	udents with fundamental c	concepts and the tools need	ded to	unde	rstand	d em	erging
-	on analytics in the organis	-					0 0
UNIT I	DATA A	ANALYTICS LIFE CYC	CLE				9
Introduction to	Big data Business Analy	tics - State of the practic	ce in a	nalyt	ics re	ole o	f data
scientists - Key	roles for successful analy	tic project - Main phases	s of life	e cyc	le - I	Deve	loping
core deliverable	s for stakeholders.						
UNIT II		STATISTICS					9
Sampling Techn	iques - Data classification	, Tabulation, Frequency a	nd Gra	phic	repre	esenta	ation -
Measures of ce	entral value - Arithmetic	mean, Geometric mean	n, Harr	nonio	e me	an, İ	Mode,
Median, Quarti	les, Deciles, Percentile	- Measures of variation	ı – Ra	inge,	IQF	R, Q	uartile
deviation, Mear	n deviation, standard dev	iation, coefficient variand	ce, ske	wnes	s, M	Iome	nts &
Kurtosis.							
UNIT III	PROBABILIT	Y AND HYPOTHESIS	TESTI	NG			9
Random variab	le, distributions, two dim	nensional R.V, joint prol	bability	fun	ction	, ma	ırginal
density function	. Random vectors - Some	e special probability distri	ibution	- Bi	nomi	ial, P	'oison,
Geometric, unife	orm, exponential, normal,	gamma and Erlang. Multi	variate	norn	al di	strib	ution -
Sampling distrib	oution – Estimation - poin	t, confidence - Test of sig	gnificar	nce, 1	& 2	taile	d test,
uses of t distribu	tion, F-distribution, $\chi 2$ dis	stribution.					
UNIT IV	PRE	DICTIVE ANALYTICS	5				9
Predictive mod	eling and Analysis - Re	egression Analysis, Mul	ti colli	near	ity, (Corre	elation
analysis, Rank	correlation coefficient, M	lultiple correlation, Least	square	e, Cı	irve	fittin	g and
goodness of fit.							
	TIME SERIES	FORECASTING AND D	DESIG	N OF	ז		0
UNIT V		EXPERIMENTS					9
	dels for Time series: MA,		on - De			perin	
Forecasting Mod	dels for Time series: MA, cation, two way classificat	SES, TS with trend, seaso		sign	of Ex	-	

INFORMATION ANALYTICS

Р

С

 \mathbf{L}

Т

COURSE OUTCOMES

21PCC04

At the end of the course students should be able to

CO1	:	Un	dersta	nd the	impo	ortanc	e of d	ata ar	alysi	s in th	e desi	gn of 1	new pi	roducts	5.	
CO2	:	Car	ry out	statis	tical	analys	sis.									
CO3	:	Do	proba	bility	analy	sis an	d hyp	othes	is tes	ting.						
CO4	:	Per	form p	predic	tive a	nalysi	is.									
CO5	:	Lea	rn the	effec	t of fo	orecas	ting r	netho	ds an	d to a	pply f	or busi	iness p	rocess		
	CO	PC/) MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	lation)	(CO/PS	0
				3	-Stroi	ng, 2-	Mod	erate,	1-Fa	ir				N	Aappi	ng
CO		PROGRAMME OUTCOMES (POs)									_		PSOs	3		
s	P 1	0	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO		3	4	5	2	3	2	/	0	,	10	11	12	2	02	
CO2	2	2			2		3							3		+
CO	3	2			3		2							3		+
CO4	1	3			3		2							2		+
CO	5	3			3		2							3		+
REF	ERE	ENC	E BO	OKS												
R1.	Alł	oerto	o Cord	loba, ʻ	'Unde	erstan	ding t	he Pr	edicti	ve Ar	alytic	s Life	cycle"	, Wiley	, 2014	
R2.	Ch	ris	Eaton	Dirk	Derc	os Ta	m D	eutscl	n et a	1 "U	nderst	anding	, Rig	Data"	McGra	wHIII,
112.	201		Lucon,	DIK		,05,10		cutsel	1 01 0	, 01	liueist	unung	, Dig	Duiu ,	uie Gra	
R3.			R Eva	ıns, "E	Busine	ess Ar	nalytic	es – N	letho	ds, M	odels	and De	ecision	ıs", Pea	arson 2	2013.
R4.	R . 1	N. F	rasad	, Seen	na Ac	harya	, "Fu	ndame	entals	of Bı	usines	s Anal	ytics",	Wiley	, 2015	•
R5.	S I	MI	Ross,	"Intro	ducti	on to	Prob	abilit	y and	l Stat	tistics	for E	nginee	ers and	l Scie	ntists",
	Ac	adeı	nic Fo	oundat	tion, 2	2011.										

21PCC	5	MECHATRONI	CS APPLICATIONS IN		L	Т	Р	C
211 CCC	5	MANU	JFACTURING		3	0	0	3
COURS	E OBJE	CTIVES						
To impa	rt knowl	edge about the elements	s and techniques involved	d in M	echa	troni	cs sy	vstems
Which ar	e very m	uch essential to understa	nd the emerging field of au	ıtomati	on.			
UNI	ТІ		INTRODUCTION					9
Introduct	ion to M	lechatronics - Systems -	Mechatronics in Products	s - Mea	sure	ment	Syst	ems -
Control S	ystems -	Traditional design and N	Mechatronics Design.					
UNI	ΓII	SENS	ORS AND TRANSDUCE	RS				9
Introduct	ion - Per	formance Terminology -	Displacement, Position an	nd Prox	imit	y - V	eloci	ty and
Motion -	Fluid p	essure - Temperature se	ensors - Light sensors - Se	lection	of s	enso	rs – S	Signal
processin	g - Serve	o systems.						
UNIT	III	MICROPRO	CESSORS IN MECHAT	RONI	CS			9
Introduct	ion - /	Architecture - Pin cou	nfiguration - Instruction	set -	- Pı	oora	mmii	lo of
		ight controller.			D C			
UNIT	IV	PROGRAM	MABLE LOGIC CONTR	OLLE	RS			9
Introduct	ion - Ba	sic structure - Input / Ou	tput processing - Program	ming -	Mne	moni	ics T	imers,
Internal r	elays and	d counters - Data handlin	g - Analog input / output -	Selecti	ion o	of PLO	C.	
UNI	ΓV	DESI	GN AND MECHATRONIC	S				9
Designin	g - Possi	ble design solutions - Ca	se studies of Mechatronics	system	ns.			
Theor	y:45	Tutorial:	Practical:	T	otal	:45 I	Iour	s
COURS	E OUTC	COMES						
At the en	d of the	course students should be	e able to					
CO1:	Recogn	ize and proficiently app	bly the relevant sciences	and sc	eienti	ific r	netho	ods to
	mechati	onics engineering, to des	sign solutions to complex p	oroblem	ıs			
CO2 :	Identify	, interpret and critical	lly appraise current dev	velopme	ents	and	adv	anced
	technol	ogies and apply them to r	nechatronics engineering					
CO3 :	Analyze	and to apply theoretic	al and numerical analysis	of phe	enon	nena	to p	redict,
	design,	control and optimize the	performance of mechatron	ics eng	inee	ring s	syste	ms.

(CO/PC) MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	lation)	(CO/PS	0	
			3	-Stroi	ng, 2-	Mode	erate,	1-Fa	ir				N	Aappi	ng	
CO			Pl	ROGI	RAM	ME ()UTC	COM	ES (P	Os)				PSOs		
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
CO1	3			3		2							3			
CO2	3			2		3							2			
CO3	3			2		2							2			
CO4	3			2		3							2			
CO5	3			3		2							3			
REFE	RENC	CE BO	OKS		I											
					, D, E	Buru,	N.C.	and L	.oade	r, AJ,	"Mecł	natroni	.cs ", (Chapm	an and	
R 1.		y, D.A			, D, E	Buru,	N.C.	and L	loade	r, AJ,	"Mech	natroni	.cs ", C	Chapm	an and	
R1.]	Bradle Hall, 1	ey, D.A 993	A., Da	wson		-								•	an and	
R1.	Bradle Hall, 1	y, D.A 993 , P.K.	A., Da	wson Sridh	nar, P	.R., (0000	to 80)85, '	'Introc	luctior			•		
R1.]	Bradle Hall, 1 Ghosh Engine	y, D.A 993 , P.K. eers an	A., Da and d Scie	Sridh entists	ar, P s ", Se	R., ()000 Editio	to 80 on, Pr	085, ' entice	'Introc e Hall,	luctior 1995	n to N	licrop	rocesso		
R1. [] R2. [] R3.]	Bradle Hall, 1 Ghosh Engine	y, D.A 993 , P.K. eers an nce J.I	A., Da	Sridh entists	nar, P s ", Se nderst	R., (cond	0000 Editions g Ele	to 80 on, Pr	085, ' entice	'Introc e Hall,	luctior 1995	n to N	licrop	rocesso	ors for	
R1. [] R2. [] R3. []	Bradle Hall, 1 Ghosh Engine Lawren Mecha	y, D.A 993 , P.K. eers an nce J.I atronic	A., Da and d Scie Kamm s ", Pr	Sridh entists n, " Un rentice	aar, P s ", Se nderst e-Hall	R., (cond andin , 200)000 Edition g Ele 0.	to 80 on, Pr ctro-N	085, ' entice Mecha	'Introc e Hall, anical	luctior 1995 Engine	n to N	An In	rocesso	ors for	
R1. [] [] [] [] [] [] [] [] [] [] [] [] [] [Bradle Hall, 1 Ghosh Engine Lawren Mecha	y, D.A 993 , P.K. eers an nce J.I atronic el B.I	A., Da and ad Scie Kamm s ", Pt Histan	Sridh entists n, " Un rentice	har, P 5 ", Se nderst e-Hall d Da	R., (cond andin , 2000	0000 Edition g Ele 0. G. A	to 80 on, Pr ctro-N lciato	085, ' entice Mecha re, "	'Introc e Hall, anical Intro	luctior 1995 Engino oductic	n to M eering	An In	rocesso	ors for	
R1. 1 1 1 R2. 0 1 1 R3. 1 1 1 R4. 1	Bradle Hall, 1 Ghosh Engine Lawren Mecha Michae Measu	y, D.A 993 , P.K. eers an nce J.I ttronic el B.I remen	A., Da and Scie Kamm s ", Pr Histan at Syst	Sridh entists n, " Un rentice nd an rems",	ar, P s ", Se nderst e-Hall d Da McG	R., (cond andin , 200 wid avid	0000 Edition g Ele 0. G. A Hill Ir	to 80 on, Pr ctro-N lciato nterna	085, ' entice Mecha re, " tional	'Introc e Hall, anical Intro	luctior 1995 Engino oductic ons, 19	n to M eering. on to 999.	An In Mech	rocesso atroduc	ors for	

21PCC06	ADVANCED TOOL DESIGN	L	Т	Р	С
		3	0	0	3
COURSE OBJE	CTIVES				
The purpose of th	is course is to make the students to get familiarized with	the d	lesigr	n of v	ariou
tools that can be i	mplemented for different mechanical operations				
		т			•
UNIT I	INTRODUCTION TO TOOL DESIGN				9
	ol Engineering – Tool Classifications– Tool Design Obje				-
-	- Challenges and requirements- Standards in tool des	-			•
	Fits and Tolerances - Tooling Materials- Ferrous and				
	les, Ceramics and Diamond -Non metallic tool mate	erials-	Desi	gning	g witl
relation to heat tre					1
UNIT II	DESIGN OF CUTTING TOOLS				9
Mechanics of Me	tal cutting – Oblique and orthogonal cutting- Chip forma	tion a	and sl	hear a	ingle
Single-point cutti	ng tools – Milling cutters – Hole making cutting tools	s- Br	oachi	ing T	ools
Design of Form re	elieved and profile relieved cutters-Design of gear and the	read r	nillir	ig cut	ters
UNIT III	DESIGN OF JIGS AND FIXTURES				9
Introduction – Fi	xed Gages - Gage Tolerances -selection of material for	or Ga	ges –	- Indi	cating
Gages – Automat	ic gages - Principles of location - Locating methods and	d dev	ices -	- Prir	nciple
of clamping – Dr	ill jigs – Chip formation in drilling – General considera	tions	in th	e des	ign o
		١ <i>τ</i>		in dui	
drill jigs – Drill b	ushings – Methods of construction –Thrust and Turning	Mom	ents	in ari	llıng
	ushings – Methods of construction – Thrust and Turning dern manufacturing- Types of Fixtures – Vise Fixtures				U
Drill jigs and mo	0	- M	illing	; Fixt	ures -
Drill jigs and mo	dern manufacturing- Types of Fixtures – Vise Fixtures Broaching Fixtures – Lathe Fixtures – Grinding Fixture	- M	illing	; Fixt	ures -
Drill jigs and mo Boring Fixtures –	dern manufacturing- Types of Fixtures – Vise Fixtures Broaching Fixtures – Lathe Fixtures – Grinding Fixture	- M	illing	; Fixt	ures -
Drill jigs and mo Boring Fixtures – – Cutting Force C UNIT IV	dern manufacturing- Types of Fixtures – Vise Fixtures Broaching Fixtures – Lathe Fixtures – Grinding Fixture alculations	– M es – N	illing ⁄Iodu	g Fixt lar Fi	ures - xtures 9
Drill jigs and mo Boring Fixtures – – Cutting Force C UNIT IV Types of Dies –	dern manufacturing- Types of Fixtures – Vise Fixtures Broaching Fixtures – Lathe Fixtures – Grinding Fixture alculations DESIGN OF PRESS TOOL DIES	– M es – N alcula	illing Iodu	g Fixt lar Fi 3- Bla	ures - xture 9 anking
Drill jigs and mo Boring Fixtures – – Cutting Force C UNIT IV Types of Dies – and Piercing die	dern manufacturing- Types of Fixtures – Vise Fixtures Broaching Fixtures – Lathe Fixtures – Grinding Fixture alculations DESIGN OF PRESS TOOL DIES Method of Die operation–Clearance and cutting force ca	– M es – N alcula ork n	illing Iodu ations	s Fixt lar Fi s- Bla ials -	ures - xture 9 anking - Strij
Drill jigs and mo Boring Fixtures – – Cutting Force C UNIT IV Types of Dies – and Piercing die	dern manufacturing- Types of Fixtures – Vise Fixtures Broaching Fixtures – Lathe Fixtures – Grinding Fixture alculations DESIGN OF PRESS TOOL DIES Method of Die operation–Clearance and cutting force ca design – Pilots – Strippers and pressure pads- Pressw	– M es – N alcula ork n	illing Iodu ations	s Fixt lar Fi s- Bla ials -	ures - xture 9 anking - Strij

Introduction –Tooling requirements for Numerical control systems – Fixture design for CNC machine tools- Sub plate and tombstone fixtures-Universal fixtures– Cutting tools– Tool

holding	g metł	nods-	Auto	matic	tool	chang	gers a	ind to	ol po	osition	ers –	Tool j	presett	ing– C	General
explan	ation o	of the I	Brown	n and	Sharp	mach	nine.								
The	ory:4	5		Tuto	rial:			P	actic	al:		Т	otal:4	5 Hou	rs
COUR	SE O	UTCO	OMES	5											
At the	end of	the co	ourse	studer	nts sh	ould t	e abl	e to							
CO1 :	It	helps	the s	tuden	ts to	get	famili	iarize	d wit	h adv	anced	tool	design	for	various
	me	chanic	cal op	eratio	ns wl	hich i	nclud	es cu	tting,	jigs a	nd fix	tures,	press	tool di	es and
	mo	dern (CNC r	nachi	ne too	ols.									
CO2 :	It h	elps t	he stu	dents	to get	unde	rstand	d the	Millir	ng cutt	ers				
CO3 :	То	provi	des st	udent	s abil	ity to	desig	gn the	jigs	and fi	xtures	which	n is us	ed in v	various
	ma	chines	5												
CO4 :	It h	elps t	he stu	dents	to get	abili	ty to c	calcul	ate th	e cutti	ng for	ces of	presse	d tools	
CO5 :	It h	elps t	he stu	dents	to get	unde	rstand	d the	CNC	machi	ne too	ls , jigs	s and f	ixture	
(CO/PC) MA	PPIN	G (S/	M/W	indic	ates s	streng	gth of	corre	lation)	(CO/PS	0
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				N	Aappi	ng
CO		1	1	ROGI	T	1	1	1	1	1	1	1		PSOs	1
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
CO1	3	2	2	2									2		
CO2	3	2	2	2									2		
CO3	3	2	2	2									2		
CO4	3	2	2	2									2		
CO5	3	2	2	2									2		
REFE	RENC	CE BC	OKS												
R1.	Cyrll	Donal	dson,	Geor	ge H	.LeCa	iin, V	′.C. (Goold	, "Too	ol Des	ign",	Tata N	McGra	w Hil
]	Publis	hing C	Compa	ny Lt	d., 20	00.									
R2.	E.G. H	loffma	an," Ji	g and	Fixtu	re De	sign"	, Tho	mson	Asia l	Pvt Lto	l, Sing	apore,	2004	
R3 .]	Hasleh	urst N	И., "М	lanufa	cturin	ng Teo	chnol	ogy",	The I	ELBS,	1978				
R4.	Prakas	h Hira	alal Jo	shi, "	Tooliı	ng dat	a", W	heele	r Pub	lishin	g, 200	0			
											-		005		
R5.	v enka	iarama	an K.,	Des	ign of	Jigs,	FIXU	ires ai	na Pre	ess too	ls", Tl	viн, 20	005		

21PCC08	MECHANISMS DESIGN AND SIMULATION L	Т	Р	C
	3	0	0	3
COURSE OBJI	ECTIVES			
To develop a the	orough understanding of the various mechanisms and its design	and	simu	ilation
with ability to ef	fectively uses the various mechanisms in real life problems.			
UNIT I	INTRODUCTION			9
Review of fur	ndamentals of kinematics-classifications of mechanisms-	comp	onen	its of
mechanisms – 1	mobility analysis - formation of one D.O.F. multi loop kin	nema	tic c	chains,
Network formul	a - Gross motion concepts-Basic kinematic structures of ser	ial a	nd p	aralle
robot manipulato	ors- compliant mechanisms-Equivalent mechanisms.			
UNIT II	KINEMATIC ANALYSIS			9
Position Analysi	is – Vector loop equations for four bar, slider crank, inverte	ed sl	ider	crank,
geared five bar a	and six bar linkages. Analytical methods for velocity and acceler	ation	Ana	alysis-
0	and six bar linkages. Analytical methods for velocity and acceler e jerk analysis. Plane complex mechanisms-auxiliary point 1			
four bar linkage		meth	od. S	Spatial
four bar linkage	e jerk analysis. Plane complex mechanisms-auxiliary point is m - Denavit - Harten berg Parameters – Forward and inverse	meth	od. S	Spatial
four bar linkage RSSR mechanis	e jerk analysis. Plane complex mechanisms-auxiliary point is m - Denavit - Harten berg Parameters – Forward and inverse	methe	od. S	Spatial
four bar linkage RSSR mechanis robot manipulate UNIT III	e jerk analysis. Plane complex mechanisms-auxiliary point is m - Denavit - Harten berg Parameters – Forward and inverse prs.	methe e kin 'E	od. S lema	Spatial tics of
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi	e jerk analysis. Plane complex mechanisms-auxiliary point normal - Denavit - Harten berg Parameters – Forward and inverseors. PATH CURVATURE THEORY, COUPLER CURV	metho e kin /E avary	od. S lema 7 equ	Spatial tics of 9 nation,
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr	e jerk analysis. Plane complex mechanisms-auxiliary point norm - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S	metho e kin /E avary	od. S lema 7 equ	Spatial tics of 9 nation,
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr	e jerk analysis. Plane complex mechanisms-auxiliary point normalized and inverse sm - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur	metho e kin /E avary	od. S lema 7 equ	Spatial tics of 9 nation,
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV	e jerk analysis. Plane complex mechanisms-auxiliary point normal of the period of the	metho e kin /E avary ve-cu	od. S leman y equ lspcr	Spatial tics of 9 nation, runode
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis -	e jerk analysis. Plane complex mechanisms-auxiliary point r sm - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS	metho e kin /E avary ve-cu onal s	od. S leman y equ usper	Spatial tics of 9 nation, runode 9 nesis –
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis - function generat	e jerk analysis. Plane complex mechanisms-auxiliary point normal - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS – Number synthesis – Associated Linkage Concept. Dimension	metho e kin /E avary ve-cu onal s Pole	od. S leman y equ usper synth tech	Spatial tics of 9 nation, unode 9 nesis – nique,
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis - function generat inversion technic	e jerk analysis. Plane complex mechanisms-auxiliary point normal - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS – Number synthesis – Associated Linkage Concept. Dimension tion, path generation, motion generation. Graphical methods-	metho e kin /E avary ve-cu onal s Pole	od. S leman y equ usper synth tech	Spatia tics of 9 nation unode 9 nesis – nique
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis - function generat inversion technic mechanisms. An	e jerk analysis. Plane complex mechanisms-auxiliary point normal - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS – Number synthesis – Associated Linkage Concept. Dimension tion, path generation, motion generation. Graphical methods- que-point position reduction-two, three and four position synthesis	metho e kin /E avary ve-cu onal s Pole esis c	od. S leman y equ usper synth tech of fou	Spatia tics of 9 nation unode 9 nesis – nique ur- ban
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis - function generat inversion technic	e jerk analysis. Plane complex mechanisms-auxiliary point a sm - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS – Number synthesis – Associated Linkage Concept. Dimension tion, path generation, motion generation. Graphical methods- que-point position reduction-two, three and four position synthe alytical methods- Freudenstein's Equation-Bloch's Synthesis.	metho e kin /E avary ve-cu onal s Pole esis c	od. S leman y equ usper synth tech of fou	Spatia tics of 9 nation unode 9 nesis – nique
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis - function generat inversion technic mechanisms. An	e jerk analysis. Plane complex mechanisms-auxiliary point a sm - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS – Number synthesis – Associated Linkage Concept. Dimension tion, path generation, motion generation. Graphical methods- que-point position reduction-two, three and four position synthe- nalytical methods- Freudenstein's Equation-Bloch's Synthesis. SYNTHESIS OF COUPLER CURVE BASED MECHANI	metho e kin /E avary ve-cu onal s Pole esis c	od. S leman y equ usper synth tech of fou	Spatia tics of 9 nation unode 9 nesis – nique 1r- ban 9
four bar linkage RSSR mechanis robot manipulate UNIT III Fixed and movi graphical constr coupler driven si UNIT IV Type synthesis - function generat inversion technic mechanisms. An UNIT V Cognate Lingage	e jerk analysis. Plane complex mechanisms-auxiliary point is sm - Denavit - Harten berg Parameters – Forward and inverse ors. PATH CURVATURE THEORY, COUPLER CURV ing centrodes, inflection points and inflection circle. Euler S ructions – cubic of stationary curvature. Four bar coupler cur ix-bar mechanisms-straight line mechanisms SYNTHESIS OF FOUR BAR MECHANISMS – Number synthesis – Associated Linkage Concept. Dimension tion, path generation, motion generation. Graphical methods- que-point position reduction-two, three and four position synthesis alytical methods- Freudenstein's Equation-Bloch's Synthesis. SYNTHESIS OF COUPLER CURVE BASED MECHANI CAM MECHANISMS	metho e kin /E avary ve-cu onal s Pole esis c ISMS	od. S leman y equ usper synth tech of fou S & vell-o	Spatial tics of 9 nation, unode 9 nesis – nique, ur- ban 9 double

The	ory:45	;	I	Tuto	rial:			Pı	actic	al:		T	otal:4	5 Hou	rs
COUR	SE O	UTC	OMES	5											
At the	end of	the co	ourse	studer	nts shou	uld t	e able	e to							
CO1 :	It l	nelps	the st	udent	s to ge	et fa	miliar	ized	with	the ac	lvance	d mec	hanisn	ns whi	ich ai
	nec	essar	y to de	esign a	and sim	nulat	e mec	hanis	sms.						
CO2 :	It h	elps t	he stu	dents	to get i	unde	rstanc	the l	kinem	atic a	nalysis	of me	chanis	m.	
CO3 :	То	provi	de stu	dents	ability	to fa	milia	rize t	he pat	h curv	ature	theory	, coupl	er cur	ve.
CO4 :	It h	elps t	he stu	dents	to get a	abili	ty to p	erfor	m the	synth	esis of	fourt	oar me	chanis	ms.
CO5 :	It h	elps t	he stu	dents	to get u	unde	rstanc	the o	cam n	nechar	nisms.				
(CO/PO) MA	PPIN	G (S/I	M/W ii	ndic	ates s	treng	gth of	corre	lation)	(CO/PS	0
			3	-Stro	ng, 2-N	Iod	erate,	1-Fa	ir				N	Iappi	ng
CO		1	1		RAMM		1		r	Os)	I	I		PSOs	5
S	PO 1	PO 2	PO 3	PO 4		PO 6	PO 7	РО 8	PO 9	PO 10	PO 11	PO 12	PS 01	PS O2	PS 03
CO1	3	2	2	2		0	,	0	,	10			2		
CO2	3	2	2	2									2		
CO3	3	2	2	2									2		
CO4	3	2	2	2									2		
CO5	3	2	2	2									2		
REFE	RENC	CE BC	OKS												
R1.	Amita	bha C	Shosh	and	Asok 1	Kun	nar M	allik,	"The	eory o	of Me	chanis	m and	Mac	hines
]	EWLP	, Delł	ni, 199	9.											
R2.]	Kenne	th J, V	Valdro	on, Ga	ary L. K	Kinz	el, "K	inem	atics,	Dynai	nics a	nd Des	sign of	Mach	inery
	ohn V	Viley-	sons, i	1999.											
R 3.]	Ramar	nurti,	V., "N	/lecha	nics of	Ma	chines	s", Na	irosa,	2005.					
R4.]	Robert	L.No	orton.,	"Desi	ign of N	Macl	ninery	",Tat	a Mc0	Graw]	Hill, 2	005.			
R5.	Sando	r G.N.	, and]	Erdma	an A.G	., "A	Advan	ced N	1echa	nism l	Design	Analy	ysis an	d Synt	hesis
]	Prentic	e Hal	l, 1984	4.							-	-			
R6.	Jicker	; J.J.,	Penno	ock, (G. R. a	nd S	higle	y, J.E	., "Tł	neory	of Ma	chines	and M	Iechar	nisms
			versity							•					

21PCC08	COMPUTATIONAL FLUID DYNAMICS	L	Т	Р	C
		3	0	0	3

COURSE OBJECTIVES

This course aims to introduce numerical modelling and its role in the field of heat, fluid flow and combustion it will enable the students to understand the various discretisation methods and solving methodologies and to create confidence to solve complex problems in the field of heat transfer and fluid dynamics.

To develop finite volume discretized forms of the CFD equations.

To formulate explicit & implicit algorithms for solving the Euler Equations & Navier Strokes Equations.

UNIT I GOVERNING DIFFERENTIAL EQUATIONS AND DISCRETISATION TECHNIQUES

9

9

Basics of Heat Transfer, Fluid flow – Mathematical description of fluid flow and heat transfer – Conservation of mass, momentum, energy and chemical species - Classification of partial differential equations – Initial and Boundary Conditions – Discretisation techniques using finite difference methods – Taylor's Series - Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT II DIFFUSION PROCESSES : FINITE VOLUME METHOD

Steady one-dimensional diffusion, Two and three dimensional steady state diffusion problems, Discretisation of unsteady diffusion problems – Explicit, Implicit and Crank- Nicholson's schemes, Stability of schemes.

UNIT III	CONVECTION - DIFFUSION PROCESSES : FINITE VOLUME	9
	METHOD	,

One dimensional convection – diffusion problem, Central difference scheme, upwind scheme – Hybrid and power law discretization techniques – QUICK scheme

UNIT IV	FLOW PROCESSES : FINITE VOLUME METHOD	9
Discretisation of	f incompressible flow equations - Pressure based algorithms, SIN	APLE,
SIMPLER & PIS	SO algorithms	
UNIT V	MODELING OF COMBUSTION AND TURBULENCE	9
Mechanisms of	combustion and Chemical Kinetics, Overall reactions and interm	ediate
reactions, Reaction	on rate, Governing equations for combusting flows. Simple Chemical Re	acting
System (SCRS),	Turbulence - Algebraic Models, One equation model & $k - \Box$, $k - \omega$ models	odels -
Standard and Hig	th and Low Reynolds number models.	

Theory:45	Tutorial:	Practical:	Total:45 Hours

At the end of the course students should be able to

CO1 :	On successful completion of this course the student will be able to apply the concepts
	of CFD to analyse the fluid flow and heat transfer in thermal systems.
CO2 :	It helps the students to get understand the diffusion steady state one, two and three

CO2 :	It helps the students to get understand the diffusion steady state one, two and the
	dimensional problems.

CO4 : It helps the students to get ability to perform the flow process algorithms.

CO5 : It helps the students to get understand the modeling of combustion and turbulence.

CO s CO1 CO2	PO 1			-Stroi	ng, 2-	Mod							1			
s CO1	PO	_	D	3-Strong, 2-Moderate, 1-Fair									Mapping			
CO1		-	CO PROGRAMME OUTCOMES (POs)									PSOs				
										PS 01	PS O2	PS 03				
CO2	1 3	2	2	2									2			
	2 3	2	2	2									2			
CO3	3 3	2	2	2									2			
CO4	4 3	2	2	2									2			
CO5	5 3	2	2	2									2			
EFI	ERENC	E BO	OKS	1								1	1		1 1	
.1.	Ghosho	dastid	ar, P.S	S., "C	ompu	ter Si	imula	tion o	f Flo	w and	Heat	Transf	er", Ta	ata Mc	Graw-	
	Hill Pu	blishi	ng Co	mpan	y Lin	nited,	New	Delhi	, 199	8.						
2.	Jiyuan	Tu, C	duan H	leng `	Yeoh,	Chao	ogun]	Liu, "	Comp	outatio	nal Fl	uid Dy	mamic	s A Pr	actical	
	Approa	ach" E	Butterv	worth	– Hei	nema	ınn Aı	n Imp	rint o	f Elsev	vier, N	ladisor	n, U.S.	A., 20	08	
.3.	John D). And	lerson	. JR.	"Cor	nputa	tional	Flui	l Dyr	namics	The I	Basics	with A	Applica	tions"	
	McGra	w- Hi	ll Inte	rnatio	onal E	ditior	ns, 19	95.								
4.	Murali	dhar,	K., aı	nd Su	ndara	rajan,	, T., ʻ	'Com	putati	onal I	Fluid I	Flow a	nd He	at Tra	nsfer",	
	Narosa	Publi	ishing	Hous	e, Ne	w De	lhi, 20	003.								
.5.	Subas	and	V.Pata	ankar	"Nur	nerica	al hea	at tra	nsfer	fluid	flow"	, Hem	ispher	e Pub	lishing	
	Corpor	ation,	1980.													
.6.	Verstee	eg and	d Mal	alasek	tera, l	N, "A	n Int	roduc	tion t	o com	putati	onal F	luid D	ynami	es The	
	Finite V	Volun	ne Me	thod,'	' Pear	son E	Educat	ion, I	.td., S	Second	l Editio	on. 201	4.			
 R3. John D. Anderson . JR. "Computational Fluid Dynamics The Basics with Applications" McGraw- Hill International Editions, 1995. R4. Muralidhar, K., and Sundararajan, T., "Computational Fluid Flow and Heat Transfer", Narosa Publishing House, New Delhi, 2003. R5. Subas and V.Patankar "Numerical heat transfer fluid flow", Hemisphere Publishing Corporation,1980. R6. Versteeg and Malalasekera, N, "An Introduction to computational Fluid Dynamics The Finite Volume Method," Pearson Education, Ltd., Second Edition, 2014. 																

21PCC0)9	RELIABILITY IN E	NGINEERING SYSTEM	IS	L	Т	P	С	
					3	0	0	3	
COURS	E OBJI	ECTIVES							
The abili	ty to use	e statistical tools to charac	cterise the reliability of an i	tem;					
The working knowledge to determine the reliability of a system and suggest approache									
enhancin	ig system	n reliability;							
The abili	ty to sel	ect appropriate reliability	validation methods						
UNI	TI	RE	LIABILITY CONCEPT					9	
Reliabili	ty defini	ition – Quality and Relia	bility– Reliability mathema	tics –	Relia	abilit	y fur	octions	
– Hazaro	ł rate –	Measures of Reliability	– Design life –A priori an	d post	erior	i pro	babil	ities –	
Mortality	y of a co	mponent –Bath tub curve	e – Useful life.						
UNI	ГП	FAI	LURE DATA ANALYSIS	5				9	
Data col	lection -	-Empirical methods: Ung	grouped/Grouped, Complet	e/Cens	ored	data	– T	ime to	
failure di	istributio	ons: Exponential, Weibul	l – Hazard plotting – Goodi	ness of	fit te	ests.			
UNIT	III	REL	IABILITY ASSESSMEN	Г				9	
Differen	t config	urations – Redundancy	– m/n system – Complex	syste	ms:	RBD) —]	Baye's	
method -	- Cut an	d tie sets – Fault Tree An	alysis – Standby system.						
UNIT	T IV	REL	ABILITY MONITORIN	G				9	
Life test	ing met	hods: Failure terminated	- Time terminated - Sequ	ential	Test	ing -	-Reli	ability	
growth n	nonitorii	ng – Reliability allocation	ı – Software reliability.						
UNI	ΓV	RELIABILITY IMPROVEMENT							
Analysis	of dow	ntime – Repair time distr	ribution – System MTTR –	Main	aina	bility	, pred	diction	
– Measu	res of m	aintainability – System A	vailability – Replacement t	heory.					
Theor	y:45	Tutorial:	Practical:]	Fota l	:45]	Hour	s	
COURS	E OUT	COMES	11						
At the er	nd of the	course students should b	e able to						
CO1 :	Analyz reliabil		en strength and stress, or life	e data i	for es	stima	ting		
CO2 :	reliabil		ogies and tools for enhanci stems, taking into consider dation	-					

CO3 : Apply techniques such as design for complex systems															
CO4	: Ex	Explain how to use techniques such as reliability monitoring													
CO5	CO5 : Describe current trends in reliability improvement														
	CO/P	O MA		G (S/I -Stroi						corre	lation)		CO/PS /Iappii	-
CO			P	ROGI	RAM	ME (DUT	COM	ES (P	Os)				PSOs	
s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	l 3	1	2	2									2		
CO2	2 3	1	2	2									2		
CO3	3 3	1	2	2									2		
CO4	1 3	1	2	2									2		
COS	5 3	1	2	2									2		
REFI	EREN	CE BO	OKS	1						I	1	1			
R1.	Charl	es E.	Ebelir	ıg, "A	n int	roduc	tion	to Re	liabili	ity an	d Mai	ntaina	bility	engine	ering"
	ТМН, 2000.														
R2.	Roy 1	Billing	ton an	d Roi	nald I	N. Al	lan, "	Relial	oility	Evalu	ation	of Eng	gineeri	ng Sys	tems"
	Sprin	ger, 20	07.												

21PCC10

INTEGRATED PRODUCT DESIGN AND PROCESS DEVELOPMENT

L	Т	Р	С
3	0	0	3

9

COURSE OBJECTIVES

specifications-Portfolio Architecture.

The course aims at providing the basic concepts of product design, product features and its architecture so that student can have a basic knowledge in the common features a product has and how to incorporate them suitably in product.

UNIT I	INTRODUCTION	9

Need for IPPD-Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement

UNIT II CONCEPT GENERATION, SELECTION AND TESTING

Plan and establish product specifications. Task - Structured approaches - clarification - searchexternally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability – Concept Testing Methodologies.

UNIT III	PRODUCT ARCHITECTURE	9					
Product developm	nent management - establishing the architecture - creation - cluste	ring -					
geometric layout	geometric layout development - Fundamental and incidental interactions - related system level						
design issues - s	econdary systems -architecture of the chunks - creating detailed int	erface					

UNIT IVINDUSTRIAL DESIGN9Integrate process design - Managing costs - Robust design - Integrating CAE, CAD, CAM tools- Simulating product performance and manufacturing processes electronically - Need forindustrial design-impact - design process - investigation of customer needs - conceptualization- refinement - management of the industrial design process - technology driven products - user -driven products - assessing the quality of industrial design.

UNIT V	DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT	9				
Definition - Estimation of Manufacturing cost-reducing the component costs and assembly						
costs - Minimize system complexity - Prototype basics - Principles of prototyping - Planning						
for prototypes - Economic Analysis - Understanding and representing tasks-baseline project						

planni	ing - a	ccelera	ting th	ne pro	ject-p	oroject	t exec	ution	•						
Th	eory:4	5		Tuto	rial:			Pı	ractic	al:		Τα	otal:45	Perio	ds
COU	RSE C	UTC	OMES	5			-								
At the	e end o	f the c	ourse	studer	nts sho	ould t	e able	e to							
CO1 :	: Ui	ndersta	and the	integ	ratior	n of cu	ustom	er rec	quiren	nents i	n prod	uct de	sign		
CO2 :	: Aj	oply st	ructura	al app	roach	to co	ncept	gene	ration	, selec	ction a	nd test	ing		
CO3	: Ui	ndersta	and v	arious	asp	ects	of d	esign	such	n as	indust	trial c	lesign,	desi	gn for
	m	anufac	ture ,e	conor	nic ar	nalysis	s and	produ	ict arc	chitect	ure				
CO4 :	: Di	scuss 1	robust	desig	n and	asses	s the	select	tion o	f robu	st desi	gn			
CO5 :	: Ex	plain o	design	for m	nanufa	acturi	ng and	d proc	luct d	evelop	oment				
	CO/P	O MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	lation)	(CO/PS	0
			3	-Stroi	ng, 2-	Mod	erate,	1-Fa	ir				N	Mappi	ng
CO			Pl	ROGI	RAM	ME (ES (P	Os)		1		PSOs	5
s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS 02	PS O3
CO1	. 3	2				3		1	2				2		
CO2	3	1				3		1	2				2		
CO3	3 2	2	3			3		2	2				1		
CO4	2	1				3		2	2				3		
CO5	5 2	2				3		1	2				1		
REFE	EREN	CE BC	OKS		1	1	1	1	1	1	1			1	
R1.	Concu	irrent	Engg./	Integ	rated	Produ	ict D	evelo	pmen	t. Ken	nnneth	Crow	, DRN	A Asso	ociates,
	6/3, V	'ia Oliv	vera, F	Palos V	Verde	s, CA	9027	4(310	0) 377	7-569,	Works	hop B	ook		
R2.	Effect	ive Pr	oduct	Desig	gn an	d De	velop	ment,	Step	hen R	osenth	al, Bu	isiness	One	Orwin,
	Home	wood,	1992,	ISBN	, 1-55	5623-0	603-4								
R3.	Produ	ct Des	sign an	d Dev	velop	ment,	Karl	T.Ulı	rich a	nd Ste	ven D	.Eppin	iger, M	IcGrav	v –Hill
	Intern	ationa	l Edns	.1999											
R4.	Tool	Desig	n – Ir	itegra	ted N	Ietho	ds for	r suc	cessfu	ıl Pro	duct E	Ingine	ering,	Stuart	Pugh,
	Addis	on We	esley P	ublisł	ning,N	Neyou	rk,NY	Y,199	1, ISE	BN 0-2	202-41	639-5			

21PCC11

PERFORMANCE MODELING AND ANALYSIS OF MANUFACTURING SYSTEM

COURSE OBJECTIVES

To develop an understanding of the use and benefits of modeling and simulation in manufacturing systems design and operation.

To develop an understanding of techniques to assess factory performance and identify areas for improvement.

To develop an understanding of techniques to assess and manufacturing performance.

To develop an understanding of techniques to enable responsive manufacturing systems.

To provide the students with knowledge of a set of tools to enable them to assess the performance of a manufacturing facility

UNIT I

MANUFACTURING SYSTEMS & CONTROL

Automated Manufacturing Systems - Modelling - Role of performance modelling – simulation models- Analytical models. Product cycle - Manufacturing automation - Economics of scale and scope - input/output model - plant configurations. Performance measures - Manufacturing leadtime - Work in process -Machine utilization - Throughput – Capacity - Flexibility - performability - Quality. Control Systems - Control system architecture - Factory communications - Local area networks - Factory net works - Open systems interconnection model - Net work to network interconnections - Manufacturing automation protocol - Database management system.

UNIT IIMANUFACTURING PROCESSES9Examples of stochastic processes - Poisson process Discrete time Markov chain models -
Definition and notation - Sojourn times in states - Examples of DTMCs in manufacturing -
Chapman - Kolmogorov equation - Steady-state analysis. Continuous Time Markov Chain
Models - Definitions and notation - Sojourn times in states - examples of CTMCs in
manufacturing - Equations for CTMC evolution - Markov model of a transfer line. Birth and
Death Processes in Manufacturing - Steady state analysis of BD Processes - Typical BD
processes in manufacturing.

UNIT III

QUEUING MODELS

9

9

Notation for queues - Examples of queues in manufacturing systems - Performance measures - Little's result - Steady state analysis of M/M/m queue, queues with general distributions and

	TIV					QUEU	ING I	NET	WOR	KS				9
Examp	les of	QN n	odels	in ma	anufactu	ring - L	ittle's l	law ii	n queu	ing ne	etwork	s - Tai	ndem q	ueue
An ope	en que	uing	netwo	rk wi	th feedb	ack - A	n ope	n cer	ntral s	erver	model	for F	MS - O	Closed
transfei	line -	Close	ed serv	ver mo	odel - G	arden N	ewell r	netwo	orks.					
UN	IT V]	PETR	I NE'	ГS					9
Classic	al Pet	ri Nets	s - Dei	finitio	ons - Tra	nsition	firing a	and re	eachal	oility -	Repre	sentat	ional p	ower
propert	ies -	Manu	factur	ing m	odels. S	Stochast	ic Pet	ri Ne	ets - I	Expon	ential	timed	Petri	Nets
Genera	lized S	Stocha	stic P	etri N	ets - mo	delling	of KAl	NBA	N syst	tems -	Manuf	acturi	ng mod	lels.
Theo	ory:45		,	Tutor	rial:		Pra	actic	al:		Т	otal:4	5 Hour	S
COUR	SE O	UTCO	OMES	5										
At the e	end of	the co	ourse s	studen	ts shoul	d be abl	e to							
CO1 :	Mo	del an	d sim	ulate	the oper	ation of	a smal	ll mai	nufact	uring	system	•		
CO2 :	Use	e simu	lation	as a r	nanufac	turing s	ystem	desig	n tech	nique.				
CO3 :	Jus	tify th	e use	of ma	nufactur	ing mod	lelling	and s	simula	ation.				
CO4 :	Use	e tech	niques	s such	as valu	ie strea	n map	ping	and	IDEF	to ider	ntify in	mprove	ements
	req	uired	in a m	anufa	cturing	system.								
CO5 :	Ap	ply te	chniqu	ies su	ich as d	esign fo	or char	ngeov	ver to	impro	ve ma	nufact	uring s	system
	per	forma	nce											
CO6 :	Exp	olain	how	to us	e techn	iques s	uch as	s exp	perime	ental d	lesign	to as	sess p	roces
	can			in a m	anufact	uring sy	stom							
	cap	ability	y with	in a m		0,	stem							
	-	-			ds in gl			uring						
CO7 :	Des	scribe	currei	nt tren		obal ma	nufacti			lation)	(CO/PS	0
CO7 :	Des	scribe	curren PPIN	nt tren G (S/I	ds in glo	obal ma dicates	nufactu streng	th of		lation)		CO/PS /Iappii	
CO7 :	Des	scribe	curren PPIN 3.	nt tren G (S/I -Stroi	ds in glo M/W ino	obal mai dicates s oderate	nufactu streng , 1-Fai	th of ir	corre	lation)			ng
CO7 : C	Des CO/PC	Scribe DMA	curren PPIN 3. PH PO	nt tren G (S/I -Stron ROGI PO	ds in glo M/W ind ng, 2-Mo RAMMI PO P	obal ma dicates s oderate E OUT(O PO	nufactu streng , 1-Fai COMH PO	th of ir ES (P PO	corre Os) PO	PO	PO	N PS	Aappin PSOs PS	ng PS
CO7 : CO CO	Des CO/PC	scribe	curren PPIN 3. PH	nt tren G (S/I -Stron ROGI	ds in glo M/W ind ng, 2-Mo RAMMI	obal mai dicates s oderate E OUT(nufactu streng , 1-Fai COMH	th of ir ES (P	corre Os)	1	1	N	/Iappii PSOs	ng
CO7 : CO CO s	Des CO/PC	PO 2	curren PPINO 3- PH PO 3	nt tren G (S/N -Stroi ROGI PO 4	ds in glo M/W ind ng, 2-Mo RAMMI PO P	obal ma dicates s oderate E OUT(O PO	nufactu streng , 1-Fai COMH PO	th of ir ES (P PO	corre Os) PO	PO	PO	PS 01	Aappin PSOs PS	ng PS
CO7 : CO s CO1	PO 1 3	PO 2 1	curren PPINO 3. PH PO 3 2	G (S/I -Stron ROGH PO 4 2	ds in glo M/W ind ng, 2-Mo RAMMI PO P	obal ma dicates s oderate E OUT(O PO	nufactu streng , 1-Fai COMH PO	th of ir ES (P PO	corre Os) PO	PO	PO	PS 01 2	Aappin PSOs PS	ng PS
CO7 : CO s CO1 CO2 CO3	Des Des CO/PC PO 1 3 3	PO 2 1	currer PPINO 3. PH PO 3 2 2 2	nt tren G (S/M -Stron ROGH PO 4 2 2	ds in glo M/W ind ng, 2-Mo RAMMI PO P	obal ma dicates s oderate E OUT(O PO	nufactu streng , 1-Fai COMH PO	th of ir ES (P PO	corre Os) PO	PO	PO	PS 01 2 2	Aappin PSOs PS	ng PS
CO7 : CO s CO1 CO2	Des Des CO/PC PO 1 3 3 3	PO 2 1 1	currer PPINO 3. PH PO 3 2 2 2 2 2	nt trem G (S/I -Stron ROGH PO 4 2 2 2 2	ds in glo M/W ind ng, 2-Mo RAMMI PO P	obal ma dicates s oderate E OUT(O PO	nufactu streng , 1-Fai COMH PO	th of ir ES (P PO	corre Os) PO	PO	PO	PS O1 2 2 2 2	Aappin PSOs PS	ng PS

R1.	Gupta S.C., & Kapoor V.K., "Fundamentals of Mathematical Statistics", 3rd Edition,
	Sultan Chand and Sons, New Delhi, 1988.
R2.	Trivedi, K.S., "Probability and Statistics with Reliability, Queuing and Computer
	Science Applications", Prentice Hall, New Jersey, 1982.
R3.	Viswanadham, N and Narahari, Y. "Performance Modeling of Automated Manufacturing
	Systems", Prentice Hall of India, New Delhi, 1994.

21PCC12

METROLOGY AND NON DESTRUCTIVE TESTING

L	Т	Р	С
3	0	0	3

COURSE OBJECTIVES

> Impart the knowledge of quality assurance and inspection techniques.

Familiarize with the various inspection and measurement techniques like contact and noncontact measurement by adapting Computer Aided Inspection.

> Impart the knowledge of working principles and calibration of various Systems.

UNIT I

UNIT II

MEASURING MACHINES

Tool Maker's microscope - Co-ordinate measuring machines - Universal measuring machine Laser viewers for production profile checks - Image shearing microscope - Use of computers -Machine vision technology - Microprocessors in metrology.

STATISTICAL QUALITY CONTROL

9

9

9

Data presentation - Statistical measures and tools - Process capability - Confidence and tolerance limits - Control charts for variables and for fraction defectives - Theory of probability - Sampling - ABC standard - Reliability and life testing.

UNIT III LIQUID PENETRANT AND MAGNETIC PARTICLE TESTS

Characteristics of liquid penetrants - different washable systems - Developers - applications Methods of production of magnetic fields - Principles of operation of magnetic particle test -Applications - Advantages and limitations.

UNIT IV	RADIOGRAPHY	9
Sources of ray-x-	ray production - properties of d and x rays - film characteristics - exp	osure

charts - contrasts - operational characteristics of x ray equipment - applications.

UNIT V	ULTRASONIC AND ACOUSTIC EMISSION TECHNIQUES	9
Production of ultr	rasonic waves - different types of waves - general characteristics of wa	aves -
pulse echo metho	d - A, B, C scans - Principles of acoustic emission techniques - Advan	ntages
and limitations - I	Instrumentation - applications.	

Theo	ry:45	Tutorial:	Practical:	Total:45 Hours
COURS	E OUTC	COMES		
At the er	nd of the o	course students should be	e able to	
CO1 :	Acquire	the knowledge in CMM	and Image Processing	
CO2 :	Underst	and the concept statistica	al quality control and use of	of various control charts

CO3	: A	cquire	knowl	edge	of liq	uid pe	enetrat	tion a	nd ma	agnetio	e parti	cle test	ting		
CO4	: U	ndersta	and the	e princ	ciples	and a	pplica	ations	of ra	diogra	phy te	st			
CO5	: A	cquire	knowl	edge	of ulti	rasoni	c and	Acou	istic e	emissio	on tech	nnique	S		
	CO/F	O MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	lation)	(CO/PS	0
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				N	Aappi	ng
CO			P	ROG	RAM	ME (OUTC	COM	ES (P	Os)				PSOs	;
S	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2			2									2		
CO2	2 2			2		2							2		
CO3	3 2			2									2		
CO4	2			2									2		
COS	; 2			2									2		
REFI	EREN	CE BO	OOKS												
R1.	Ame	rican S	ociety	for M	letals,	" Me	tals H	land I	Book	", Vol	.II, 19′	76.			
R2.	Barry	Hull a	ind Ve	rnon	John,	" Nor	n Dest	ructiv	ve Tes	sting "	, Macl	Millan	, 1988.		
R3.	JAIN	, R.K.	" Engi	neerir	ng Me	etrolog	gy ", I	Khanr	na Pul	olisher	s, 199	7.			
R4.	U	ess in				ŕ				10th I	Interna	tional	Acous	stic En	nissio
	Symp	osium	", Jap	anese	Socie	ety for	NDI	, 1990).						

21PCC1	.3	QUALITY MANAG	GEMENT TECHNIQUE	S	L	Т	Р	C
				-	3	0	0	3
COURS	E OBJI	ECTIVES						
To provid	de stude	nt with the basic understand	nding of the approaches a	nd tech	niqu	es to	asse	ss and
improve	process	and or product quality and	l reliability					
UNI	ГΙ		INTRODUCTION					9
Need for	TQM,	evolution of quality, Defin	ition of quality, TQM phi	ilosoph	y – (Contr	ibuti	ons of
Deming J	Juran, C	rosby And Ishikawa, TQM	I Models.					
UNIT	ΓΙΙ		PLANNING					9
Vision, N	Mission,	Quality policy and object	tive Planning and Organ	ization	for	quali	ty, Ç	Quality
policy De	eploym	ent, Quality function deplo	oyment, introduction to B	PR and	ana	lysis	of Q	Quality
Costs.								
UNIT	' III	ŗ	TQM PRINCIPLES					9
Customer	r focus	Leadership and Top m	anagement commitment,	Emplo	yee	invo	lven	nent –
Empower	rment	and Team work, Supp	plier Quality Managem	nent, C	Conti	nuou	is p	rocess
improver	nent, Tr	aining, performance Meas	urement and customer sat	isfactio	n.			
UNIT	IV	TOM TO	OOLS AND TECHNIQU	IES				9
		L L						
PDSA, T		en Tools of Quality, New			ncep	t of	six s	sigma,
	The Sev		w Seven management too	ols, Co	ncep	t of	six s	sigma,
	The Sev Bench N	en Tools of Quality, Nev Iarking, JIT, POKA YOKI	w Seven management too	ols, Co	ncep	t of	six :	sigma,
FMEA, E UNIT	The Sev Bench M	en Tools of Quality, Nev Iarking, JIT, POKA YOKI	w Seven management too E, 5S, KAIZEN, Quality c QUALITY SYSTEMS	ols, Con				9
FMEA, E UNIT Need fo	The Sev Bench M F V r ISO	en Tools of Quality, Nev Iarking, JIT, POKA YOKI Q	w Seven management too E, 5S, KAIZEN, Quality c UALITY SYSTEMS Documentation, Implen	ols, Construction				9
FMEA, E UNIT Need fo	The Sev Bench M T V r ISO 0 and O	en Tools of Quality, New Iarking, JIT, POKA YOKI Q 9000 Systems, clauses	w Seven management too E, 5S, KAIZEN, Quality c UALITY SYSTEMS Documentation, Implen	ols, Con vircles. mentations.	on,		ducti	9 on to
FMEA, E UNIT Need fo ISO1400	The Sev Bench M T V or ISO 0 and 0 y:45	en Tools of Quality, New Iarking, JIT, POKA YOKH 9000 Systems, clauses SHAS18000, Implementat Tutorial:	w Seven management too E, 5S, KAIZEN, Quality c UALITY SYSTEMS Documentation, Implention of TQM, Case Studie	ols, Con vircles. mentations.	on,	Intro	ducti	9 on to
FMEA, E UNIT Need fo ISO1400 Theory COURS	The Sev Bench M T V or ISO 0 and O y:45 E OUT	en Tools of Quality, New Iarking, JIT, POKA YOKH 9000 Systems, clauses SHAS18000, Implementat Tutorial:	w Seven management too E, 5S, KAIZEN, Quality c DALITY SYSTEMS Documentation, Implention of TQM, Case Studie Practical:	ols, Con vircles. mentations.	on,	Intro	ducti	9 on to
FMEA, E UNIT Need fo ISO1400 Theory COURS	The Sev Bench M T V or ISO 0 and 0 y:45 E OUT d of the	en Tools of Quality, New Iarking, JIT, POKA YOKH 9000 Systems, clauses SHAS18000, Implementat Tutorial: COMES	w Seven management too E, 5S, KAIZEN, Quality c DALITY SYSTEMS Documentation, Implention of TQM, Case Studie Practical:	ols, Con rircles. nentations. T	on,	Intro	ducti	9 on to
FMEA, E UNIT Need fo ISO1400 Theory COURS At the en	The Sev Bench M T V T ISO 0 and 0 y:45 E OUT d of the Demor	en Tools of Quality, New Iarking, JIT, POKA YOKH Q 9000 Systems, clauses SHAS18000, Implementat Tutorial: COMES course students should be	w Seven management too E, 5S, KAIZEN, Quality c DALITY SYSTEMS Documentation, Implention of TQM, Case Studie Practical: able to t philosophy and principle	ols, Con circles. mentations. T	on, i	Introd :45 I	ducti Hour	9 on to s
FMEA, E UNIT Need fo ISO1400 Theory COURS At the en	The Sev Bench M T V T ISO 0 and 0 y:45 E OUT d of the Demor	en Tools of Quality, New Iarking, JIT, POKA YOKH Q 9000 Systems, clauses SHAS18000, Implementat Tutorial: COMES course students should be astrate quality managemen ality policy deployment an	w Seven management too E, 5S, KAIZEN, Quality c DALITY SYSTEMS Documentation, Implention of TQM, Case Studie Practical: able to t philosophy and principle	ols, Con circles. mentations. T	on, i	Introd :45 I	ducti Hour	9 on to s
FMEA, E UNIT Need fo ISO1400 Theory COURS At the en	The Sev Bench M TV TV T ISO 0 and 0 y:45 E OUT d of the Demor Use qu produc	en Tools of Quality, New Iarking, JIT, POKA YOKH Q 9000 Systems, clauses SHAS18000, Implementat Tutorial: COMES course students should be astrate quality managemen ality policy deployment an	w Seven management too E, 5S, KAIZEN, Quality c DALITY SYSTEMS Documentation, Implement tion of TQM, Case Studie Practical: able to t philosophy and principle nd quality function deploy	ols, Con vircles. mentations. T es yment to	on, i	Introd :45 I	ducti Hour	9 on to s
FMEA, E UNIT Need fo ISO1400 Theory COURS At the en CO1 : CO2 :	The Sev Bench M T V T ISO 0 and 0 y:45 E OUT d of the Demon Use qu produc Unders	en Tools of Quality, New Iarking, JIT, POKA YOKH Q 9000 Systems, clauses SHAS18000, Implementat Tutorial: COMES course students should be astrate quality managemen ality policy deployment an t	w Seven management too E, 5S, KAIZEN, Quality c Documentation, Implement tion of TQM, Case Studie Practical: able to t philosophy and principle nd quality function deploy m top management level to	ols, Con vircles. mentations. T es yment to	on, i	Introd :45 I	ducti Hour	9 on to s
FMEA, E UNIT Need fo ISO1400 Theory COURS At the en CO1 : CO2 : CO3 :	The Sev Bench M T V T ISO 0 and 0 y:45 E OUT d of the Demon Use qu produc Unders Famili	en Tools of Quality, New Iarking, JIT, POKA YOKH Q 9000 Systems, clauses SHAS18000, Implementat Tutorial: COMES course students should be astrate quality managemen ality policy deployment and t stand quality principles fro	w Seven management too E, 5S, KAIZEN, Quality c Documentation, Implement tion of TQM, Case Studie Practical: able to t philosophy and principle nd quality function deploy m top management level to of different quality tools	ols, Con vircles. mentations. T es yment to	on, i iotal	Introd :45 I	ducti Iour	9 on to s

				U (D)	VI/ VV	maic	ates s	streng	th of	corre	lation)		CO/PS	0
			3	-Stro	ng, 2-	Mod	erate,	1-Fa	ir				Ν	Ларріі	ng
)		-	P	ROG	RAM	ME (DUTC	COM	ES (P	Os)				PSOs	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS 03
1	2			2		2		1					2		
2	2			2		2		1					2		
3	2			2		2		1					2		
4	2			2		2		1					2		
5	2			2		2	3	1					2		
Έ	RENC	CE BC	OKS								-		·	-	
	Brain l	Rether	ry, ISO	O 900 C	0, Pro	ducti	vity a	nd Qu	ality	Publis	hing F	vt.Ltd	., 1993	3.	
	D.Mill	s, Qua	ality A	uditii	ng, Cł	napma	an and	l Hall	, 1993	3.					
	Juran J	I.M an	nd Fra	nk M.	Gryna	a Jr., '	'Qual	ity Pl	annin	g and	Analy	sis", T	MH, Iı	ndia, 1	982.
	Naraya	ana V.	and s	Sreeni	ivasar	, N.S	., "Qı	uality	Mana	ageme	nt – C	oncep	ts and	Tasks'	', New
	Age In	ternat	ional	1996.											
	Oaklar	nd.J.S.	. "Tota	al Qua	ality N	/lanag	gemen	ι t" , Βι	utterw	vorth-	Hciner	nann I	Ltd., O	xford,	1989.
	Zeiri. '	'Total	Qual	ity Ma	anage	ment	for Er	nginee	ers", V	Wood	Head	Publisl	ners, 1	991	
	Juran J Naraya Age In Oaklar	J.M an ana V. aternat	ad France and Stand Standards ional	nk M. Sreeni 1996. al Qua	Gryna Ivasar ality N	a Jr., ʻ n, N.S Manag	'Qual ., "Qu gemen	ity Pl ıality t", Bı	annin Mana itterw	g and ageme	nt – C Hciner	oncep	ts and _td., C		India, 1 Tasks' Dxford, 991

21PCC14	COMPOSITE MATERIALS AND MECHANICS	L	Т	Р	С
		3	0	0	3

COURSE OBJECTIVES

To understand the fundamentals of composite material strength and its mechanical behaviour. Understanding the analysis of fiber reinforced Laminate design for combinations of plies with different orientations of the fiber.

Thermo-mechanical behavior and study of residual stresses in Laminates during processing. Implementation of Classical Laminate Theory (CLT) to study and analysis for residual stresses in an isotropic layered structure such as electronic chips.

PRE-REQUISITES:

UNIT I INTRODUCTION TO COMPOSITE MATERIALS

Definition-Matrix materials-polymers-metals-ceramics - Reinforcements different: Particles, whiskers, inorganic fibers, metal filaments- ceramic fibers- fiber fabrication- natural composite wood, Jute - Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites,

UNIT II

MANUFACTURING OF COMPOSITES

9

9

9

Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-, bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) – Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) – hot pressing-reaction bonding process-infiltration technique, direct oxidation-interfaces

UNIT III

INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS

Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix (Qij), Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

UNIT IV

LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

UNIT V

THERMAL ANALYSIS

9

9

Assumption of Constant Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's. C.T.E's for special Laminate Configurations – Unidirectional, Off-axis, Symmetric Balanced Laminates, Zero C.T.E. laminates, Thermally Quasi-Isotropic Laminates.

	ory:45	5		Tuto	rial:			Pı	actic	al:		Т	otal:4	5 Hou	rs
COUR	SE O	UTCO	OMES	5											
At the e	end of	the co	ourse	studer	nts sh	ould t	be able	e to							
CO1 :	Un	derstar	nd the	basics	of cor	nposit	te mate	erials.							
CO2 :	Un	derstar	nd the	differe	nt ma	nufact	turing	metho	ds ava	ailable	for con	nposite	materi	al.	
CO3 :	Un	derstar	nd the	lamina	l const	titutive	e equa	tions.							
CO4 :	Un	derstar	d the	stresse	es and	l strai	ns rel	ation	in cor	nposit	es mat	erials.			
CO5 :	_	derstar													
(-	-				lation)		CO/PS	0
							erate,					, 	N	Aappi	ng
					-										
СО			P	ROG	RAM	ME (OUTO	COM	ES (P	Os)				PSOs	5
CO s	PO 1	PO 2	PO	PO	PO	PO	PO	РО	РО	РО	PO 11	PO 12	PS O1	PS	PS
	PO 1 3	PO 2		1	1	1	1	1	1	1	PO 11	PO 12 1	PS 01 2	1	1
S	1	-	PO	PO	PO	PO 6	PO	PO 8	РО	РО	-	12	01	PS	PS
s CO1	1 3	-	PO	PO	PO	PO 6	PO	PO 8 2	РО	РО	-	12	01 2	PS	PS
s CO1 CO2 CO3	1 3 3	2	PO	PO	PO	PO 6 1 2	PO	PO 8 2 3	РО	РО	-	12 1 2	01 2 2	PS	PS
s CO1 CO2	1 3 3 3	2	PO	PO	PO	PO 6 1 2 2 2	PO	PO 8 2 3 3 3	РО	РО	-	12 1 2 2	O1 2 2 2 2 2	PS	PS

	John Wiley and Sons, New York, 1990.
R2.	Chung, Deborah D.L., "Composite Materials: Science and Applications", Ane Books
	Pvt. Ltd./Springer, New Delhi, 1st Indian Reprint, 2009
R3.	Gibson, R.F., Principles of Composite Material Mechanics, McGraw-Hill, 1994, Second
	Edition - CRC press in progress.
R4.	Halpin, J.C., "Primer on Composite Materials, Analysis", Techomic Publishing Co.,
	1984.
R5.	Hyer, M.W., "Stress Analysis of Fiber - Reinforced Composite Materials", McGraw-
	Hill, 1998
R6.	Issac M. Daniel and Ori Ishai, "Engineering Mechanics of Composite Materials", Oxford
	University Press-2006, First Indian Edition - 2007
R7.	Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures",
	University Press (India) Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008)
R8.	Mallick, P.K. and Newman, S., (edition), "Composite Materials Technology:
	Processes and Properties", Hansen Publisher, Munish, 1990.
R9.	Mallick, P.K., Fiber –"Reinforced Composites: Materials, Manufacturing and
	Design", Maneel Dekker Inc, 1993.

21PC	C15	DESIGN OF M	ATERIAL HANDLING		L	Т	Р	С
		EQU	JIPMENTS	-	3	0	0	3
COURSE	E OBJE	ECTIVES						
To impar	t stude	nts on the need, use, ap	plication and design of d	lifferen	t ma	ateria	ıl haı	ndling
technique	s, equip	oments and machines used	l in common use and in ind	ustrial	sect	or		
UNIT	ľ	MATERIA	LS HANDLING EQUIP	MENT				5
Types, sel	lection	and applications						
UNIT	II	I	DESIGN OF HOISTS					10
Design of	f hoisti	ng elements: Welded and	d roller chains - Hemp ar	nd wire	e rop	bes -	Desi	ign of
ropes, pu	lleys, p	oulley systems, sprockets	and drums, Load handlin	ng attao	chm	ents.	Desi	gn of
forged ho	oks and	l eye hooks – crane grabs	- lifting magnets - Grabbi	ng attac	chme	ents -	- Des	ign of
arresting g	gear - E	Brakes: shoe, band and con	ne types.					
UNIT	III	DRIV	ES OF HOISTING GEA	R				10
Hand and	power	drives - Traveling gear -	- Rail traveling mechanism	- cant	ileve	er an	d mo	norail
cranes - sl	lewing,	jib and luffing gear - cog	wheel drive - selecting the	motor 1	ratin	gs.		
UNIT	IV		CONVEYORS					10
Types - de	escripti	on - design and application	ons of Belt conveyors, apro	n conve	eyor	s and	l esca	lators
Pneumatio	c conve	yors, Screw conveyors an	d vibratory conveyors.					
UNIT	V		ELEVATORS					10
Bucket el	evators	e: design - loading and	bucket arrangements - Ca	ige elev	vato	rs -	shaft	way,
guides, co	ounter v	veights, hoisting machine,	safety devices - Design of	fork lif	ft tru	icks.		
Theory	::45	Tutorial:	Practical:	Т	'otal	:45 I	Iour	s
COURSE	E OUT	COMES						
At the end	d of the	course students should be	e able to					
CO1:	familia	rize in types of materia	l handling and to select	suitable	e ma	ateria	ıl ha	ndling
	equipn	nent.						
CO2 :	Design	the hoisting element for	required application					
CO3 :	Design	power transmission drive	es for hoist					
CO4 :	Descril	be and design different co	nveyor system					
CO5 :	Design	bucket elevator and fork	lift trucks					

	CO/PO) MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	elation)	(CO/PS	0
	3-Strong, 2-Moderate, 1-Fair CO PROGRAMME OUTCOMES (POs)												Ν	Aappii	ng
CO		-	Pl	ROGI	RAM	ME (OUTO	COM	ES (P	Os)				PSOs	
s	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO	1 3		3			2			2				3		
CO2	2 3		3			2			1				3		
CO3	3 3		3			2			1				3		
CO4	1 3		3			2			1				3		
COS	3 3		3			2			1				3		
REF	ERENC	CE BC	OKS	•	•	•	•			•		•			•
R1.	Alexa	ndrov,	M., N	lateri	als Ha	andlin	ıg Equ	iipme	nts, N	/IR Pu	ublishe	ers, 198	81.		
R2.	Boltzh	arol, A	А., Ma	terial	s Han	dling	Hand	lbook	, The	Ronal	d Pres	s Com	pany,	1958.	
R3.	Lingai	ah. K	. and	Nara	vana	Iveng	ar, "N	Machi	ne D	esign	Data]	Hand	Book"	, Vol.	& 2,
	Suma			•			, ,			U				,	,
R4.	P.S.G.	Tech.	, "Des	sign D)ata B	look"	, Kala	ikathi	r Ach	nchaga	ım, Co	imbato	ore, 20	03.	
R5.	Ruden	ko, N.	, Mate	erials	handl	ing ea	quipm	ent, I	ELnve	e Pub	lishers	, 1970	•		
R6.	Spivak	xovsy,	A.O.	and	Dyacl	nkov,	V.K.	, Con	veyin	ig Ma	chines	, Volu	mes I	and I	I, MIR
	Publis	hers, 1	985.												

21PCC16	PRODUCT LIFE	CYCLE MANAGEMEN	ΓΙ	T	Р	C
			3	0	0	3
COURSE OBJ	ECTIVES					
To understand h	story, concepts and termin	nology of PLM				
To understand fu	inctions and features of PI	LM/PDM				
To understand di	fferent modules offered ir	a commercial PLM/PDM to	ools			
To understand P	LM/PDM implementation	approaches				
To understand in	tegration of PLM/PDM w	ith other applications				
UNIT I	HISTORY, CONC	EPTS AND TERMINOL	OGY OI	' PLM	[9
Introduction to	PLM, Need for PLM,	opportunities of PLM, D	oifferent	views	of F	PLM -
Engineering Da	ta Management (EDM),	Product Data Managem	ent (PDI	<i>А</i>), С	ollabo	orative
Product Definiti	on Management (cPDm)	, Collaborative Product C	Commerc	e (CP	C), P	roduct
Lifecycle Manag	gement (PLM).PLM/PDM	Infrastructure – Network	and Com	munic	ations	s, Data
Management, He	eterogeneous data sources	and applications.				
UNIT II	PLM/PDM	FUNCTIONS AND FEA	TURES			9
User Functions -	-Data Vault and Documer	t Management, Workflow	and Pro	ess M	anag	ement,
Product Structur	e Management, Product	Classification and Progra	mme Ma	nagen	nent.	Utility
Functions – Cor	nmunication and Notifica	tion, data transport, data t	ranslatio	n, ima	ge se	rvices,
system administr	ration and application integ	gration.				
UNIT III	DETAILS OF MO	DULES IN A PDM/PLM	I SOFTV	ARE		9
Case studies base	ed on top few commercial	PLM/PDM tools				
UNIT IV	ROLE	OF PLM IN INDUSTRI	ES			9
Case studies on	PLM selection and impler	nentation (like auto, aero,	electroni	c) - ot	her po	ossible
sectors, PLM vi	sioning, PLM strategy, P	LM feasibility study, char	nge mana	gemer	nt for	PLM,
financial instific	ation of PLM, barriers to	D PLM implementation, to	en step a	pproa	ch to	PLM,
initialitia justific						
5	for-business, organisation	n, users, product or service	, process	perfor	manc	e.
benefits of PLM	-	n, users, product or service	-	-		
5	-	-	-	-		e. 9
benefits of PLM UNIT V	BASICS ON CUSTOM	IISATION/INTEGRATI	ON OF P	DM/F	PLM	9
benefits of PLM UNIT V	BASICS ON CUSTOM	ISATION/INTEGRATI	ON OF P	DM/F	PLM	9

At th	e end	of t	he co	ourse s	studen	its sho	ould b	e able	e to										
CO1	: [Jnde	erstai	nd his	tory, d	conce	pts ar	nd teri	ninol	ogy o	f PLN	1.							
CO2	: 4	Appl	ly the	e func	tions	and fe	eature	s of P	LM/I	PDM.									
CO3	: l	Jnde	ersta	nd dif	ferent	mod	ules o	ffered	l in co	omme	ercial l	PLM/P	DM to	ools.					
CO4	: l	Jnde	ersta	nd PL	M/PD	M in	plem	entati	on ap	proac	hes.								
CO5	: I	nteg	grate	PLM/	PDM	with	other	appli	catio	ns.									
	CO/	PO	MAI	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	elation)	CO	/PSO				
				3.	Stroi	ng, 2-	Mode	erate,	1-Fa	ir				Map	oping				
CC					1		1	1		ES (P	1			PS	SOs				
S	P(PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2				
CO				3	_	_	2	-	-	-				2					
CO	2 3			3			2							2					
CO	3 3			3			2							<u> </u>			2	2	
CO	4 3			3			2							2					
CO	5 3			3			2							2					
REF	EREI	ICE	E BO	OKS								1							
R1.	Antt	i Sa	aaksv	uori	and A	Anseli	mi In	nmon	en, "]	Produ	ct Lif	ecycle	Man	agement	", Spri				
	Publ	ishe	er, 20	08 (31	rd Edi	ition).													
R2.	Inter	nati	ional	Journ	alof	Produ	ict Lif	fecycl	e Ma	nagen	nent, l	Indersc	cience	Publishe	rs				
R3.	Ivica	ι C	rnko	vic,	Ulf A	Asklu	nd a	nd A	nnita	Pers	sson	Dahlq	vist, ʻ	'Impleme	enting				
	Integ	grati	ing P	roduc	t Data	ı Man	agem	ent ai	nd So	ftware	e Con	figurat	ion M	anageme	nt", Ar				
	Hou	se P	ublis	shers,	2003.														
R4.	Johr	Sta	ark, '	"Glob	al Pro	oduct	Stra	tegy,	Prod	uct Li	ifecyc	le Ma	nagem	ent and	the Bi				
	Cust	ome	er Qu	estion	ı", Sp	ringe	r Publ	lisher	, 2007	7.									
	Johr	St	tark,	"Pro	duct	Lifec	ycle	Mana	igeme	ent: 2	21st C	Centur	y Para	adigm f	or Pro				
R5.	1	:	ion"	Sprin	oer P	ublisł	ner, 20	011 (2	2nd E	dition).								
R5.	Real	isat	ion,	Spin	501 1			· ·			/								

21PCC17	DESIGN FOR INTERNET OF THINGS	L	Т	Р	С
		3	0	0	3
COURSE OBJE	CTIVES				
To impart knowle	edge on state of art IoT architecture, data and knowledge m	nana	geme	ent a	nd use
of devices in IoT	technology.				
PRE-REQUISIT	TES:				
UNIT I	INTRODUCTION				9
Machine to Mach	ine (M2M) to IoT-The Vision-Introduction, From M2M to	IoT	, M2	M to	wards
IoTthe global con	text, A use case example, Differing Characteristics.				
UNIT II	IoT STRUCTURE				9
M2M to $IoT - A$	Market Perspective– Introduction, Some Definitions, M2M	1 Va	lue C	Chair	ns, IoT
Value Chains, Ar	n emerging industrial structure for IoT, The international c	driv	en gl	obal	value
chain and global	information monopolies. M2M to IoT-An Architectural O	Over	view	– Bu	uilding
-					
-	Main design principles and needed capabilities, An IoT a	archi	itectu	re o	utline,
•	••••	archi	itectu	re o	utline,
an architecture, N	••••	archi	itectu	re o	utline, 9
an architecture, M standards conside UNIT III	erations.				9
an architecture, M standards conside UNIT III M2M and IoT	erations. IoT NETWORKING	cal	and	wide	9 e area
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data	Technology Fundamentals- Devices and gateways, Loc	cal	and	wide	9 e area
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data	Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as	cal	and	wide	9 e area
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV	Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as malytics, Knowledge Management.	cal a S	and Servi	wide ce (2	9 e area XaaS), 9
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture-	Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as malytics, Knowledge Management. IoT ARCHITECTURE	cal a S	and Servi	wide ce (2	9 e area XaaS), 9
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture-	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as alytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture	cal a S	and Servi	wide ce (2	9 e area XaaS), 9
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture- Introduction, Refe UNIT V	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as alytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model.	cal a S e Re	and Servie	wide ce (2	9 e area XaaS), 9 Aodel- 9
an architecture, N standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture- Introduction, Refe UNIT V IoT Reference A	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as alytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model. ARCHITECTURE MODELING	cal a S e Re	and Servie eferer	wide ce (2 ace N eplo	9 e area XaaS), 9 Aodel- 9 yment
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture-3 Introduction, Refe UNIT V IoT Reference A and Operational	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as alytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model. ARCHITECTURE MODELING architecture- Introduction, Functional View, Information Yearchitecture	cal a S e Re Vie	and Servie eferer w, D ign (wide ce (2 ace N eplo Cons	9 e area XaaS), 9 Aodel- 9 yment traints
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture- Introduction, Refe UNIT V IoT Reference A and Operational Introduction, Tech	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as alytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model. ARCHITECTURE MODELING architecture- Introduction, Functional View, Information View, Other Relevant architectural views. Real-World I	cal a s a s e Re Vie Des a rep	and Servio eferer w, D ign (preser	wide ce (2 ace N eplo Cons	 9 area XaaS), 9 Model- 9 yment traints on and
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture- Introduction, Refe UNIT V IoT Reference A and Operational Introduction, Tech visualization, Int	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as alytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model. ARCHITECTURE MODELING architecture- Introduction, Functional View, Information View, Other Relevant architectural views. Real-World I https://www.opular.again, Data	cal a s e Re Vie Des a rep	and Servio eferer w, D ign (preser Servio	wide ce (2 ace N eplo Cons tatic	 9 area XaaS), 9 Aodel- 9 yment traints on and iented
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture- Introduction, Refe UNIT V IoT Reference A and Operational Introduction, Tech visualization, Introduction	IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as halytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model. ARCHITECTURE MODELING architecture- Introduction, Functional View, Information View, Other Relevant architectural views. Real-World I chnical Design constraints-hardware is popular again, Data teraction and remote control. Industrial Automation-	cal a S e Re Vie Des a rep a- S e inte	and Servio eferer w, D ign (preser Servio egrato	wide ce (2 ace N eplo Cons tatic ce-or ed W	 9 area XaaS), 9 Aodel- 9 Model- 9 Model- 9 Model- 10 10<!--</td-->
an architecture, M standards conside UNIT III M2M and IoT 7 networking, Data M2M and IoT An UNIT IV IoT Architecture-3 Introduction, Refe UNIT V IoT Reference A and Operational Introduction, Tech visualization, Intra architecture-based Things, IMC-AES	IoT NETWORKING IoT NETWORKING Technology Fundamentals- Devices and gateways, Loc a management, Business processes in IoT, Everything as nalytics, Knowledge Management. IoT ARCHITECTURE State of the Art – Introduction, State of the art, Architecture erence Model and architecture, IoT reference Model. ARCHITECTURE MODELING architecture- Introduction, Functional View, Information View, Other Relevant architectural views. Real-World I chnical Design constraints-hardware is popular again, Data teraction and remote control. Industrial Automation- d device integration, SOCRADES: realizing the enterprise	cal a S e Re Vie Des a rep a- S e into comm	and Servio eferer w, D ign (preser Servio egrationercia	wide ce (2 nce N eplo Cons ntatic ce-or ed W al Bu	 9 area XaaS), 9 Aodel- 9 yment traints on and iented Veb of nilding

Th	eor	y:45	5		Tuto	rial:			Pı	actic	al:		T	otal:45 l	Hours
COU	RS	E OI	UTCO	OMES	5							ľ			
At the	e en	d of	the co	ourse s	studer	nts sho	ould t	e able	e to						
CO1	:	Uno	dersta	nd the	visio	n of I	oT fr	om a g	globa	l cont	ext.				
CO2	:	Det	Determine the Market perspective of IoT.												
CO3	:	Use	Use of Devices, Gateways and Data Management in IoT.												
CO4	:	Bui	Build state of the art architecture in IoT.												
CO5	:	Apply of IoT in Industrial and Commercial Building Automation and Real World													
		Des	sign C	onstra	ints.										
	CC)/PO) MA	PPIN	G (S/I	M/W	indic	ates s	treng	gth of	corre	lation)	CO	/PSO
				3.	-Stroi	ng, 2-	Mod	erate,	1-Fa	ir				Maj	pping
CO				PI	ROGI	RAM	ME (OUTO	COM	ES (P	Os)	-	•	PS	SOs
S	I 1	20	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO		3		-	_	2		-	-	-				2	
CO	2	3				2								2	
CO.	3	3				2								2	
CO	1	3		2		2								2	
CO	5	3		2	2	2								2	
REF	ERI	ENC	E BO	OKS											
R1.	Fra	ancis	s da	Costa	, "Re	ethink	ing 1	the Iı	nterne	et of	Thing	gs: A	Scala	ble App	proach to
	Co	nneo	cting I	Everyt	hing"	, 1st]	Editio	n, A j	oress	Public	cation	s, 2013	3.		
R2.	Jar	n Ho	ller, V	Vlasio	s Tsia	atsis, (Cathe	rine N	Aullig	gan, S	tefan	Avesa	nd, Sta	amatis K	larnouskos,
	Da	vid	Boyle	e, "Fro	om M	[achir	ie-to-	Mach	ine to	the	Intern	et of '	Things	: Introd	uction to a
	Ne	w A	ge of	Intelli	igence	e", 1st	Edit	ion, A	cade	nic P	ress, 2	.014.			
R3.	Vi	jay]	Madis	setti a	nd A	rshde	ep B	ahga,	"Inte	rnet	of Th	ings (A Haı	nds-on-A	Approach)",
	1st	Edit	ion, V	/PT, 2	014.										

21PC	C18	ARTIFICIAL INT	ELLIGENCE SYSTEMS		L	Т	P	С
				-	3	0	0	3
COURS	E OBJE	CTIVES						<u> </u>
≻ s	tudy the	concepts of Artificial Int	elligence.					
≻ L	earn the	methods of solving probl	ems using Artificial Intellig	gence.				
≻ Ir	ntroduce	the concepts of Expert S	ystems and machine learnin	ıg.				
UNI	ΤI	SCOPE OF	ARTIFICIAL INTELLIO	GENC	E			9
Games, t	heorem j	proving, natural languag	e processing, vision and sp	eech p	proce	essin	g, ro	botics,
expert sy	stems, A	rtificial Intelligent techni	ques- search knowledge, at	ostracti	ion			
UNI	ГІІ	Ι	PROBLEM SOLVING					9
State spa	ice searcl	h, Production systems, s	earch space control, depth	-first, I	brea	dth-f	ïrst s	earch,
heuristic	search	- Hill climbing, best-fi	rst search, branch and bo	ound, H	Prob	lem	Redu	uction,
Constrain	nt Satisfa	ction End, Means-End A	nalysis					
UNIT	T III	KNOW	LEDGE REPRESENTAT	ION				9
Predicate	e Logic -	Unification, modus pone	s, resolution, dependency d	lirected	l bac	ktra	cking	, Rule
based S	ystems,	Forward reasoning, con	nflict resolution, backwar	d Rea	soni	ng,	use	of no
backtracl	k, Structu	red Knowledge Represe	entation, Semantic Nets, slo	ots, exc	cepti	ons	and o	lefault
frames, c	onceptua	l dependency, scripts.						
UNI	ΓΙ	HANDLING	UNCERTAINTY AND LE	EARNI	ING			9
Non-Mor	notonic	Reasoning, Probabilistic	reasoning, use of certai	inty fa	ctor	rs, fu	ızzy	logic,
Concept	of learn	ing, learning automation	n, genetic algorithm, learn	ing by	inc	luction	ons,	neural
nets.								
UNI	ΓV		EXPERT SYSTEMS					9
Need an	d justific	cation for expert system	ns, knowledge acquisition,	Intro	ducti	ion 1	to m	achine
learning,	Intellige	ence for manufacturing	cools, manufacturing brain,	eye a	nd ł	nand	Tre	nds in
robot inte	elligence	Case studies in the appl	ication of Artificial Intellige	ence in	n ma	nufa	cturii	ıg.
Theor	ry:45	Tutorial:	Practical:	Т	'otal	:45]	Hour	'S
COURS	E OUTC	COMES						
At the en	d of the	course students should be	e able to					
CO1 :	Underst	and and explain the issue	es related to simulate intelli	gence.				
CO2 :	Discuss	different type of AI						
CO3 :	Explain	the fundamentals of know	wledge representation					

CO4		Demonstrate working knowledge of reasoning in the process of incomplete or uncertain information.														
CO5	: Ap	ply th	e Expe	ert sys	stem f	for ma	anufac	cturin	g proc	cess						
	CO/PO) MA					ates s erate,		,	corre	lation)		/PSO pping		
CO				P												
s	PO PO PO PO PO PO PO PO PO PO PO								PO 11	PO 12	PS 01	PSO 2				
CO 1	1 2	2			3								2			
CO2	2 2	2			3								2			
CO3	3 2	2			3								2			
CO ₂	1 2	2			3								2			
CO	5 2	2			3								2			
REF	ERENC	CE BC	OKS													
R1.	Elaine	Rich	and K	Levin	Knig	ht "A	rtifici	al int	ellige	nce",	McGra	aw Hil	ll Educ	cation (I	ndia)	
	Private	e Limi	ted; 3	editio	on, Oc	tober	2008									
R2.	Nilsso	n N.J.	, "Prir	nciple	s of A	Artific	cial In	tellig	ent",	Morga	an Kau	ıfmanr	n Publi	shers, Iı	nc.; 1	
	editior	n, Apri	il, 199	8)												
R3.	Patters	on D.	"Intro	oducti	on to	Artifi	icial I	ntellig	gence	and E	xpert S	System	ns", PH	II, 1997		
R4.	Stuart	Russ	ell "A	Artific	al In	tellig	ence:	A N	Ioder	n Ap	proach	: A N	Moder	n Appro	bach"	
	Pearso							1		· [7]		1				
R5.	Peter J					to Exi	pert S	vstem	s". A	ddisor	n-Wesl	ev:De	cembe	r.1998		
															1 7	
R6.			-		ial In	tellig	ence	- an	Engin	eering	g Appı	oach"	, McG	raw Hil	I Int.	
	Ed., Si	ngapo	ore, 19	92.												